Flexible and conductive PP/EPDM/Ni coated glass fiber composite for efficient electromagnetic interference shielding

  • Hongji Duan
  • Mingjuan Zhao
  • Yaqi Yang
  • Guizhe Zhao
  • Yaqing Liu


Efficient electromagnetic interference (EMI) shielding performance for sealing materials exposed to the environment has become an increasing requirement in the precision electronics, aerospace and military applications. Nowadays, it is still a big challenge to prepare EMI shielding seal material with recyclable and low cost characters. Herein, the flexible polypropylene/ethylene-propylene-diene monomer/nickel coated glass fiber (PP/EPDM/NCGF) shielding composite is fabricated via electroless deposition and melt-reactive blending method. The Ni layer coated on the surface of glass fiber constructs a 3D conductive network in the composite ascribed to the well-connected glass fiber skeleton. The composite exhibits an EMI SE of 22.2 dB and elongation at break of 126.5% by adding only 1 vol% Ni (16.36 vol% NCGF). The good mechanical property and satisfied EMI shielding effectiveness suggest that TPV/NCGF is a promising substitution to fabricate recyclable, lightweight and low cost shielding seal materials.



The authors gratefully acknowledge the financial support from the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No. sklpme2017-4-09), Natural Science Foundation of Shanxi Province (No. 201701D221089) and the National Natural Science Foundation of China (Grant Nos. 21704070, 51773185).


  1. 1.
    S.H. Lee, S. Yu, F. Shahzad, W.N. Kim, C.Park,S.M. Hong, C.M. Koo, Nanoscale 9, 13432–13440 (2017)CrossRefGoogle Scholar
  2. 2.
    F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, Science 353, 1137–1140 (2016)CrossRefGoogle Scholar
  3. 3.
    D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25, 559–566 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27, 2049–2053 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia, B. Zhang, B.Z. Tang, M.S. Chan, J.K. Kim, Adv. Mater. 26, 5480–5487 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Kwon, R.J. Ma, U. Kim, H.R. Choi, S. Baik, Carbon 68, 118–124 (2014)CrossRefGoogle Scholar
  7. 7.
    D.S. Xie, X.F. Meng, J. Ma, L. Zhu, X.Q. Shen, Polym. Polym. Compd. 22, 453–458 (2014)Google Scholar
  8. 8.
    S. Ramarad, M. Khalid, C.T. Ratnam, A.L. Chuah, W. Rashmi, Prog. Mater Sci. 72, 100–140 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Wang, H. Yang, J.L. Wang, F.X. Li, Polym. Test. 38, 53–56 (2014)CrossRefGoogle Scholar
  10. 10.
    C.F. Antunes, A.V. Machado, M.V. Duin, Eur. Polym. J. 47, 1447–1459 (2011)CrossRefGoogle Scholar
  11. 11.
    M.V. Duin, Macromolecules 233, 11–16 (2006)Google Scholar
  12. 12.
    R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.Z. Yu, Adv. Funct. Mater. 27, 1702807 (2017)CrossRefGoogle Scholar
  13. 13.
    G.A. Gelves, M.H.A. Saleh, U. Sundararaj, J. Mater. Chem. 21, 829–836 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Zhan, C.L.D. Tan, S. Prakitritanon, M. Lin, H. Sato, Chem. Commun. 53, 9198–9201 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Guo, H.J. Duan, C.Y. Dong, G.Z. Zhao, Y.Q. Liu, Y.Q. Yang, Mater. Lett 143, 124–127 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.Q. Yang, T.T. Hou, C.Y. Dong, G.Z. Zhao, Y.Q. Liu, J. Polym. Res 23, 1–7 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, C.Y. Dong. G.Z. Zhao, Y.Q. Liu, J. Mater. Sci. Mater. Electron. 28, 9126–9131 (2017)CrossRefGoogle Scholar
  18. 18.
    H.J. Duan, J.M. Yang, Y.Q. Yang, G.Z. Zhao. Y.Q. Liu, J. Mater. Sci. Mater. Electron. 28, 5725–5732 (2017)CrossRefGoogle Scholar
  19. 19.
    T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, J. Mater. Chem. A 1, 9138–9149 (2013)CrossRefGoogle Scholar
  20. 20.
    R.A. Orza, P.C.M. M.Magusin, V.M. Litvinov, M. Van Duin, M.A.J. Michels, Macromolecules 42, 8914–8924 (2009)CrossRefGoogle Scholar
  21. 21.
    N. Wang, Z.Y. Xu, P.F. Zhan, K. Dai, G.Q. Zheng, C.T. Liu, C.Y. Shen, J. Mater. Chem. C 5, 4408–4418 (2017)CrossRefGoogle Scholar
  22. 22.
    M.B. Heaney, Phys. Rev. B 52, 12477–12480 (1995)CrossRefGoogle Scholar
  23. 23.
    L. Kong, X.W. Yin, M.K. Han, X.Y. Yuan, Z.X. Hou, Y. Fang, L.T. Zhang, L.F. Cheng, Z.W. Xu, J.F. Huang, Carbon 111, 94–102 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Zhao, C.B. Park, J. Mater. Chem. C 5, 6954–6961 (2017)CrossRefGoogle Scholar
  25. 25.
    S.S. Chauhan, M. Abraham, V. Choudhary, RSC Adv 6, 113781–113790 (2016)CrossRefGoogle Scholar
  26. 26.
    V.K. Sachdev, S.K. Sharma, M. Tomar, V. Gupta, R.P. Tandon, RSC Adv 6, 45049–45058 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T.K. Chaki, D. Khastgir, N.C. Das, Compos. B 109, 155–169 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Kuester, C. Merlini, G.M.O. Barra, J.C.F. Jr, A. Lucas, A.C.D. Souza, B.G. Soares, Compos. B 84, 236–247 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Ren, D.P. Song, Z. Li, L.C. Jia, Y.C. Zhao, D.X. Yan, P.G. Ren, J. Mater. Chem. C 6, 1476–1486 (2018)CrossRefGoogle Scholar
  30. 30.
    A. Franklin, M.C. Gupta, J. Compos. Mater. 48, 1261–1276 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Nanocomposites of Shanxi Province, College of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations