Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15464–15479 | Cite as

Preparation of TiO2–(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance

  • Nayely Pineda-Aguilar
  • Lorena Leticia Garza-Tovar
  • Eduardo M. Sánchez-Cervantes
  • Margarita Sánchez-Domínguez


Synthesis of TiO2–(B) bronze was carried out by hydrothermal method using different precursors: (a) commercial anatase, (b) amorphous TiO2 prepared by O/W microemulsion method and (c) oil-in-water (O/W) microemulsion with freshly prepared amorphous TiO2. It is important to highlight this is the first report of the preparation of TiO2–(B) using an O/W microemulsion as a precursor. The effect of precursor type on the resulting TiO2 nanostructures, namely, their structural and morphological features were studied using X-ray diffraction, thermal analysis (TGA–DTA), Brunauer–Emmett–Teller, Raman spectroscopy and scanning electron microscopy (SEM–EDX). From commercial anatase powder, amorphous TiO2 ME and O/W microemulsion ME238 (NaOH/TiO2 molar ratio 238), biphasic nanoribbons were obtained: TiO2–(B) (88–92%) and anatase (8–12%). While from the O/W microemulsion ME30 (NaOH/TiO2 molar ratio 30) only anatase phase was obtained. The material with higher TiO2–(B) phase content, showed an increase in its reversible capacity, thus the crystalline nature of the precursor as well as the textural properties contribute to the electrode performance. Materials synthesized from commercial anatase and amorphous TiO2 ME exhibited similar charge retention (86–87%) despite the slight difference in reversible capacity, 210 and 180 mAh/g, respectively. It is noticed that TiO2–(B)–AME (prepared from amorphous TiO2 ME) exhibited the lowest capacity loss, e.g. the highest reversibility.



The authors express their gratefulness to the Project SEP-CONACYT CB-2012-01 #189865. This work was also supported by PAICYT-UANL program through project number IT468-15. The authors also acknowledge Alberto Toxqui Terán (CIMAV Monterrey), Francisco Enrique Longoria (CIMAV Monterrey), J. Alejandro Arizpe Zapata (CIMAV Monterrey) and Departamento Ecomateriales y Energía (FIC-UANL) for their help with TGA–DTA, XRD, RAMAN/TEM and BET measurements, respectively. Special thanks to Arturo Rodríguez Rodríguez and Pedro Luis Córdoba Osorio for their great help in the laboratory. Also, the support of Raquel Garza with the AAnalyzer® software (deconvolution of Raman peaks) is recognized.


  1. 1.
    J.S. Chen, L.A. Archer, X. Wen Lou, J. Mater. Chem. 21, 9912–9924 (2011)CrossRefGoogle Scholar
  2. 2.
    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)CrossRefGoogle Scholar
  3. 3.
    H.-Y. Wu, M.-H. Hon, C.-Y. Kuan, I.-C. Leu, J. Electron. Mater. 43, 1048–1054 (2014)CrossRefGoogle Scholar
  4. 4.
    A.G. Dylla, G. Henkelman, K.J. Stevenson, Acc. Chem. Res. 46, 1104–1112 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160–3163 (1998)CrossRefGoogle Scholar
  6. 6.
    A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew. Chem. Int. Ed. 43, 2286–2288 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Armstrong, A.R. Armstrong, J. Canales, P.G. Bruce, Chem. Commun. 19, 2454 (2005)CrossRefGoogle Scholar
  8. 8.
    N. Liu, X. Chen, J. Zhang, J.W. Schwank, Catal. Today 225, 34–51 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Sanchez-Dominguez, M. Boutonnet, C. Solans, J. Nanopart. Res. 11, 1823 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Sanchez-Dominguez, K. Pemartin, M. Boutonnet, Curr. Opin. Colloid Interface Sci. 17, 297–305 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Boutonnet, J. Kizling, P. Stenius, G. Maire, Colloids Surf. 5, 209–225 (1982)CrossRefGoogle Scholar
  12. 12.
    M. Sanchez-Dominguez, L.F. Liotta, G. Di Carlo, G. Pantaleo, A.M. Venezia, C. Solans, M. Boutonnet, Catal. Today 158, 35–43 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Tiseanu, V.I. Parvulescu, M. Boutonnet, B. Cojocaru, P.A. Primus, C.M. Teodorescu, C. Solans, M.S. Dominguez, Phys. Chem. Chem. Phys. 13, 17135–17145 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Sanchez-Dominguez, H. Koleilat, M. Boutonnet, C. Solans, J. Dispersion Sci. Technol. 32, 1765–1770 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Pemartin, C. Solans, G. Vidal-Lopez, M. Sanchez-Dominguez, Chem. Lett. 41, 1032–1034 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Di Carlo, M. Lualdi, A.M. Venezia, M. Boutonnet, M. Sanchez-Dominguez, Catalysts 5, 442–459 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Yoshida, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 2179–2185 (2005)CrossRefGoogle Scholar
  18. 18.
    M. Sanchez-Dominguez, G. Morales-Mendoza, M.J. Rodriguez-Vargas, C.C. Ibarra-Malo, A.A. Rodriguez-Rodriguez, A.V. Vela-Gonzalez, S. Perez-Garcia, R. Gomez, J. Environ. Chemi. Eng. 3, 3037–3047 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Pemartin-Biernath, A.V. Vela-González, M.B. Moreno-Trejo, C. Leyva-Porras, I.E. Castañeda-Reyna, I. Juárez-Ramírez, C. Solans, M. Sánchez-Domínguez, Materials 9, 480 (2016)CrossRefGoogle Scholar
  20. 20.
    C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järås, C.n. Civera, C. Solans, G.R. Kuttuva, Langmuir 28, 8479–8485 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Pemartin, C. Solans, J. Alvarez-Quintana, M. Sanchez-Dominguez, Colloids Surf. A 451, 161–171 (2014)CrossRefGoogle Scholar
  22. 22.
    T. Beuvier, M. Richard-Plouet, L. Brohan, J Phys. Chem. C 113, 13703–13706 (2009)CrossRefGoogle Scholar
  23. 23.
    Z. Liu, Y.G. Andreev, A. Robert Armstrong, S. Brutti, Y. Ren, P.G. Bruce, Prog. Nat. Sci.: Mater. Int. 23, 235–244 (2013)CrossRefGoogle Scholar
  24. 24.
    G.-N. Zhu, C.-X. Wang, Y.-Y. Xia, J. Power Sources 196, 2848–2853 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Fehse, F. Fischer, C. Tessier, L. Stievano, L. Monconduit, J. Power Sources 231, 23–28 (2013)CrossRefGoogle Scholar
  26. 26.
    A.-L. Papa, N. Millot, L. Saviot, R. Chassagnon, O. Heintz, J. Phys. Chem. C 113, 12682–12689 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Sanchez-Dominguez, C.A.C. Solans, in Smart Nanoparticles Technology, ed. by A. Hashim (Intech, Rijeka, 2012), pp. 195–220Google Scholar
  28. 28.
    V. Bellat, R. Chassagnon, O. Heintz, L. Saviot, D. Vandroux, N. Millot, Dalton Trans. 44, 1150–1160 (2015)CrossRefGoogle Scholar
  29. 29.
    D.L. Morgan, H.-W. Liu, R.L. Frost, E.R. Waclawik, J. Phys. Chem. C 114, 101–110 (2010)CrossRefGoogle Scholar
  30. 30.
    B. Yao, Y.F. Chan, X. Zhang, W. Zhang, Z. Yang, N. Wang, Appl. Phys. Lett. 82, 281–283 (2003)CrossRefGoogle Scholar
  31. 31.
    J. Huang, Y. Cao, M. Wang, C. Huang, Z. Deng, H. Tong, Z. Liu, J. Phys. Chem. C 114, 14748–14754 (2010)CrossRefGoogle Scholar
  32. 32.
    D.L. Morgan, G. Triani, M.G. Blackford, N.A. Raftery, R.L. Frost, E.R. Waclawik, J. Mater. Sci. 46, 548–557 (2011)CrossRefGoogle Scholar
  33. 33.
    T. Kasuga, Thin Solid Films 496, 141–145 (2006)CrossRefGoogle Scholar
  34. 34.
    D.V. Bavykin, M. Carravetta, A.N. Kulak, F.C. Walsh, Chem. Mater. 22, 2458–2465 (2010)CrossRefGoogle Scholar
  35. 35.
    D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370–3377 (2004)CrossRefGoogle Scholar
  36. 36.
    A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song, C. Tang, J. Phys. Chem. C 111, 14353–14357 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Sheng, L. Hu, L.E. Mo, W. Li, H. Tian, S. Dai, Sci. China Chem. 55, 368–372 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Graetzel, Chem. Mater. 17, 1248–1255 (2005)CrossRefGoogle Scholar
  39. 39.
    Q. Wang, Z. Wen, J. Li, Inorg. Chem. 45, 6944–6949 (2006)CrossRefGoogle Scholar
  40. 40.
    Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, RSC Adv. 1, 1834–1840 (2011)CrossRefGoogle Scholar
  41. 41.
    Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Angew. Chem. Int. Ed. 51, 2164–2167 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Grosjean, M. Fehse, S. Pigeot-Remy, L. Stievano, L. Monconduit, S. Cassaignon, J. Power Sources 278, 1–8 (2015)CrossRefGoogle Scholar
  43. 43.
    P. Zheng, T. Liu, Y. Su, L. Zhang, S. Guo, Sci. Rep. 6, 36580 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Centro de Investigación en Materiales Avanzados, S.C. (CIMAV)ApodacaMexico

Personalised recommendations