Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15458–15463 | Cite as

Emission and structure variations at aging ZnO:Ag nanocrystals prepared by spray pyrolysis

  • T. V. Torchynska
  • J. L. Casas Espinola
  • B. El Filali
  • G. Polupan
  • E. Velázquez Lozada


The emission and structure of ZnO:Ag nanocrystal (NC) films obtained by ultrasonic spray pyrolysis have been studied in the as-grown state and after aging. The scanning electronic microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) methods have been applied. The films are characterized by the wurtzite crystal structure with the NC sizes about of 8.0–10.0 nm in the as-grown state and 6.0–8.0 nm after aging in ambient air. The Ag content was varied within the range of 1–4 at.% in the ZnO films. PL spectra of as-grown ZnO:Ag films are complex and can be presented as a set of PL bands at 10 K: the near band edge emission with the peak at 3.18 eV, two Ag doping—related PL bands centered at 2.95 and 2.68 eV, and native defect-related green (2.40 eV) and orange (1.90 eV) PL bands. The high PL intensities of Ag doping-related PL bands were detected for the Ag concentrations of 2–3 at.%. PL intensities of high energy PL bands (3.18, 2.95 and 2.68 eV) fall down at aging together with intensity stimulating the orange and green PL bands. The joint analysis of XRD and PL results permit to confirm that the 2.95 eV PL band is connected with the optical transition via the substitutional AgZn defects. It was shown as well that aging in ambient air is owing to the diffusion of oxygen interstitials in the ZnO:Ag NCs that leads to intensity increasing the orange PL band and modification of the AgZn radiative defects.



The authors thank the Secretary of Investigation and Postgraduate Study at National Polytechnic Institute (SIP-IPN) of Mexico (Project 20180495), and National Council of Science and Technology (CONACYT) (Project 258224) for the financial support.


  1. 1.
    Y. Yan, S.B. Zhang, S.T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Zunger, Appl. Phys. Lett. 83, 57 (2003)CrossRefGoogle Scholar
  3. 3.
    S. Limpijumnong, S.B. Zhang, S.-H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Wang, H. Wu, Z. Wang, C. Chen, C. Liu, Appl. Phys. Lett. 101, 161905 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Zhang, R. Shen, H. Liang, Y. Liu, Y. Liu, X. Xia, G. Du, J. Phys. D: Appl. Phys. 46, 065101 (2013)CrossRefGoogle Scholar
  6. 6.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  7. 7.
    H.I. Abdulgafour, Z. Hassan, N.M. Ahmed, F.K. Yam, J. Appl. Phys. 112, 074510 (2012)CrossRefGoogle Scholar
  8. 8.
    R.J. Hong, K. Helming, X. Jiang, B. Szyszka, Appl. Surf. Sci. 226, 378 (2004)CrossRefGoogle Scholar
  9. 9.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)CrossRefGoogle Scholar
  10. 10.
    K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, S.J. Park, Appl. Phys. Lett. 83, 63 (2003)CrossRefGoogle Scholar
  11. 11.
    Y.R. Ryu, T.S. Lee, H.W. White, Appl. Phys. Lett. 83, 87 (2003)CrossRefGoogle Scholar
  12. 12.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 252102 (2005)CrossRefGoogle Scholar
  13. 13.
    M.A. Thomas, J.B. Cui, J. Appl. Phys. 105, 093533 (2009)CrossRefGoogle Scholar
  14. 14.
    R. Sánchez Zeferino, M. Barboza, U. Flores, Pal, J. Appl. Phys. 109, 014308 (2011)CrossRefGoogle Scholar
  15. 15.
    S.M. Hosseini, I.A. Sarsary, P. Kameli, H. Salamati, J. Alloys Compd. 640, 408 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Yan, M.M. Al-Jassim, S.-H. Wei, Appl. Phys. Lett. 89, 181912 (2006)CrossRefGoogle Scholar
  17. 17.
    I.S. Kim, E.Y. Jeong, D.Y. Kim, M. Kumar, S.Y. Choi, Appl. Surf. Sci. 255, 4011 (2009)CrossRefGoogle Scholar
  18. 18.
    K. Liu, B. Yang, H. Yan, Z. Fu, M. Wen, Y. Chen, J. Zuo, J. Lumin. 129, 969 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Xu, Z.Y. Zhang, Y. Zhang, B.X. Lin, Z.X. Fu, Chin. Phys. Lett. 22, 2031 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Liu, S.W. Qu, W.W. Yu, S.Y. Bao, C.Y. Ma, Q.Y. Zhang, J. He, J.C. Jiang, E.I. Meletis, C.L. Chen, Appl. Phys. Lett. 97, 231906 (2010)CrossRefGoogle Scholar
  21. 21.
    A.N. Gruzintsev, V.T. Volkov, E.E. Yakimov, Semiconductors 37, 259 (2003)CrossRefGoogle Scholar
  22. 22.
    L. Balakrishnan, S. Gokul Raj, S.R. Meher, K. Asokan, Z.C. Alex, Appl. Phys. A: Mater. Sci. Process. 119, 1541 (2015)CrossRefGoogle Scholar
  23. 23.
    E. Velázquez Lozadaa, T.V. Torchynska, J.L. Casas Espinola, B. Pérez Millan, Physica B 453, 111 (2014)CrossRefGoogle Scholar
  24. 24.
    T.V. Torchynska, L.I. Khomenkova, N.E. Korsunska, B.R. Dzumaev, J. Phys. Chem. Solids 61, 937 (2000)CrossRefGoogle Scholar
  25. 25.
    T.V. Torchynska, N.E. Korsunskaya, L.Y. Khomenkova, B.R. Dzhumaev, S.M. Prokes, Microelectron. Eng. 51–52, 485 (2000)Google Scholar
  26. 26.
    T.V. Torchynska, I.Ch.B. Ballardo Rodriguez, B. El Filali, G. Polupan, A.I. Diaz Cano, Mater. Sci. Semicond. Process. 79, 99 (2018)CrossRefGoogle Scholar
  27. 27.
    M.K. Patra, K. Manzoor, M. Manoth, S.P. Vadera, N. Kumar, J. Lumin. 128(2), 267 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 76, 3549 (2000)CrossRefGoogle Scholar
  29. 29.
    C.H. Ahn, S.K. Mohanta, N.E. Lee, H.K. Cho, Appl. Phys. Lett. 94, 271904 (2009)Google Scholar
  30. 30.
    A.B. Djurisic, A.M.C. Ng, X.Y. Chen, Prog. Quantum Electron. 34, 191 (2010)CrossRefGoogle Scholar
  31. 31.
    X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95(6), 3141 (2004)CrossRefGoogle Scholar
  32. 32.
    L.S. Vlasenko, G.D. Watkins, Phys. Rev. B 71, 125210 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Qiu, X. Li, W. He, S.-J. Park, H.-K. Kim, Y.-H. Hwang, J.-H. Lee, Y.-D. Kim, Nanotechnology 20, 155603 (2009)CrossRefGoogle Scholar
  34. 34.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  35. 35.
    T.V. Torchynska, B. El Filali, J. Lumin. 149, 54 (2014)CrossRefGoogle Scholar
  36. 36.
    A.I. Diaz Cano, B. El Filali, T.V. Torchynska, J.L. Casas Espinola, Physica E 51, 24 (2013)CrossRefGoogle Scholar
  37. 37.
    B. El Filali, T.V. Torchynska, G. Polupan, L. Shcherbyna, Mater. Res. Bull. 85, 161 (2017)CrossRefGoogle Scholar
  38. 38.
    T. Prasada Rao, S. Gokul Raj, M.C. Santhosh Kumar, Procedia Mater. Sci. 6, 1631 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Wang, P.D. Bristowe, Acta Mater. 137, 115 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalESFMMexico CityMexico
  2. 2.Instituto Politécnico NacionalUPIITAMexico CityMexico
  3. 3.Instituto Politécnico NacionalESIMEMexico CityMexico

Personalised recommendations