Advertisement

Controllable synthesis and formation mechanism of 3D flower-like TiO2 microspheres

  • Chaoyang Hu
  • Lei E
  • Dan Zhao
  • Kangkai Hu
  • Jin Cui
  • Qiumin Xiong
  • Zhifeng Liu
Article
  • 104 Downloads

Abstract

The high recombination rate of electrons and holes has been one of the important reasons for limiting photocatalytic efficiency. In order to improve the photocatalytic performance, the reduction of the recombination probability can be achieved by regulating the morphology of the microspheres. 3D flower-like TiO2 microspheres were successfully prepared by a one-step hydrothermal method using tetrabutyl titanate (TBT) as titanium source, glacial acetic acid (HAc) as solvent and capping agent. The TiO2 microspheres were analyzed by XRD, SEM, and N2 adsorption–desorption isotherm for structure and morphology characterization. The results show that the samples were self-assembled by nanosheets to form the anatase TiO2 microspheres with mesoporous structure and the surface area of TiO2 can reach 356 m2/g. As the heat treatment temperature increases, the nanosheets were destroyed. The methylene orange (MO) was degraded 99% in 2 h, and the catalyst could be reused many times over. The formation mechanism of flower-like TiO2 microspheres was discussed in detail based on the above investigations.

Notes

Acknowledgements

Funding was provided by Science Funds of Tianjin for Distinguished Young Scholar (Grant No. 17JCJQJC44800) and Natural Science Foundation of Tianjin City (Grant No. 16JCYBJC17900).

References

  1. 1.
    A. Elsanousi, N. Elamin, S. Elhouri, Highly ordered TiO2 nanotubes and their application to dye sensitized solar cells. J. Appl. Ind. Sci. 1, 39–42 (2013)Google Scholar
  2. 2.
    P.V. Viet, B.T. Phan, V. Hieu le, C.M. Thi, The effect of acid treatment and reactive temperature on the formation of TiO2 nanotubes. J. Nanosci. Nanotechnol. 15, 5202–5206 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Gao, X. Luo, H. Fu, Y. Chen, B. Lin, Z. Gu, Facile synthesis of TiO2 microspheres with reactive (001) facets for improved photocatalytic performance. J. Nanosci. Nanotechnol. 14, 3969–3975 (2014)CrossRefGoogle Scholar
  4. 4.
    X. Jiang, Y. Zhang, Z. Li, Y. Ren, M. Zhang, G. He, X. Song, Z. Sun, Microstructure, optical and photoelectron-chemical properties of TiO2 microspheres prepared by hydrothermal method. J. Mater. Sci.: Mater. Electron. 26, 2070–2075 (2014)Google Scholar
  5. 5.
    C.J. Lin, W.T. Yang, C.Y. Chou, S.Y. Liou, Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water. Chemosphere 152, 490–495 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Zhong, Q.K. Jiang, B.K. Huang, W.H. Zhang, C. Li, Synthesis and characterization of anatase TiO2 nanosheet arrays on FTO substrate. J. Energy Chem. 24, 626–631 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Yang, Q.H. Zhang, W.H. Wang, S.B. Ma, M. Zhang, J.G. Lv, G. He, Z.Q. Sun, Tuning the photoelectronic and photocatalytic properties of single-crystalline TiO2 nanosheet array films with dominant {001} facets by controlling the hydrochloric acid concentration. J. Mater. Sci. 51, 950–957 (2015)CrossRefGoogle Scholar
  8. 8.
    B.X. Lei, X.F. Zheng, H.K. Qiao, Y. Li, S.N. Wang, G.L. Huang, Z.F. Sun, A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells. Electrochim. Acta 149, 264–270 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Kuroda, K. Chuzo, The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 63, 988–992 (1990)CrossRefGoogle Scholar
  10. 10.
    D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew. Chem. Int. Ed. 34, 2014–2017 (1995)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, S. Yang, Y. Guan, W. Cao, J. Xu, Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly. Macromolecules 36, 4238–4240 (2003)CrossRefGoogle Scholar
  12. 12.
    J.Y. Liao, B.X. Lei, D.B. Kuang, C.Y. Su, Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ. Sci. 4, 4079–4085 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Jiang, Y. Guo, X. Han, N. Liang, Preparation and photocatalytic property of hierarchical TiO2 microsphere. New Chem. Mater. 42, 74–76 (2014)Google Scholar
  14. 14.
    Y.P. Que, J. Weng, L.H. Hu, J.H. Wu, S.Y. Dai, High open voltage and superior light-harvesting dye-sensitized solar cells fabricated by flower-like hierarchical TiO2 composed with highly crystalline nanosheets. J. Power Sources 307, 138–145 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Shi, Y.L. Yang, G.H. Dong, Y.X. Jiang, L.G. Wei, T. Su, R.Q. Fan, Three-dimensional flower-like rutile TiO2 microsphere composed of nanorods: a potential material as light scattering layer for DSSCs. Chem. Res. Chin. Univ. 33, 298–304 (2017)CrossRefGoogle Scholar
  16. 16.
    W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 136, 6437–6445 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Jitputti, S. Pavasupree, Y. Suzuki, S. Yoshikawa, Fabrication of size-controllable flower-like TiO2 and its photocatalytic activity. ECS Trans. 16, 3–9 (2009)CrossRefGoogle Scholar
  18. 18.
    N.S. Chaudhari, S.S. Warule, S.A. Dhanmane, M.V. Kulkarni, M. Valant, B.B. Kale, Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S. Nanoscale 5, 9383–9390 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Xiang, D. Wu, J. He, X. Wang, Acquired pH-responsive and reversible enrichment of organic dyes by peroxide modified ultrathin TiO2 nanosheets. Chem. Commun. 47, 11456–11458 (2011)CrossRefGoogle Scholar
  20. 20.
    T.J. Zhu, J. Li, Q.S. Wu, Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl. Mater. Interfaces 3, 3448–3453 (2011)CrossRefGoogle Scholar
  21. 21.
    T.A. Arun, D.K. Chacko, A.A. Madhavan, T.G. Deepak, G.S. Anjusree, T. Sara, S. Ramakrishna, S.V. Nair, A.S. Nair, Flower-shaped anatase TiO2 mesostructures with excellent photocatalytic properties. RSC Adv. 4, 1421–1424 (2014)CrossRefGoogle Scholar
  22. 22.
    B.P. Bastakoti, Y. Sakka, K.C.W. Wu, Y. Yamauchi, Synthesis of highly photocatalytic TiO2 microflowers based on solvothermal approach using N,N-dimethylformamide. J. Nanosci. Nanotechnol. 15, 4747–4751 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Ma, S.T. Yao, P.F. Cheng, S.S. Du, Y.F. Sun, F.M. Liu, G.Y. Lu, Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells. Chem. Res. Chin. Univ. 31, 841–845 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Zhao, C. Zhong, Y.L. Wang, S.M. Wang, B.H. Dong, L. Wan, Ag nanoparticle-decorated 3D flower-like TiO2 hierarchical microstructures composed of ultrathin nanosheets and enhanced photoelectrical conversion properties in dye-sensitized solar cells. J. Power Sources 292, 49–57 (2015)CrossRefGoogle Scholar
  25. 25.
    D.H. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Li, W. Wan, F. Zhu, Q. Li, H. Zhou, J. Li, D. Xu, Nanotube-based hierarchical titanate microspheres: an improved anode structure for Li-ion batteries. Chem. Commun. 48, 389–391 (2012)CrossRefGoogle Scholar
  27. 27.
    J.Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, Z. Chen, Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 13, 5467–5473 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Zhang, Q. Li, C. An, K. Li, H. Zhang, Y. Pan, J. Zheng, Preparation and photocatalysis of TiO2 flower-like nanostructures. Chem. Reag. 36, 243–247 (2014)Google Scholar
  29. 29.
    H. Wang, X. Li, C. Wu, H. Shi, Synthesis and photocatalytic properties of flower-like TiO2. J. Synth. Cryst. 45, 2478–2482 (2016)Google Scholar
  30. 30.
    Y. Bao, T.T. Lim, Z. Zhong, R. Wang, X. Hu, Acetic acid-assisted fabrication of hierarchical flower-like Bi2O3 for photocatalytic degradation of sulfamethoxazole and rhodamine B under solar irradiation. J. Colloid Interface Sci. 505, 489–499 (2017)CrossRefGoogle Scholar
  31. 31.
    Q.Y. Wang, Q.Q. Yuan, Z.Y. Liu, R.C. Jin, Y.M. Cui, S.M. Gao, Ultrasound-assisted synthesis and solar-light-driven photoelectrocatalytic activity of CdS sensitized TiO2 nanotube array photocatalysts. Sep. Purif. Technol. 194, 216–221 (2018)CrossRefGoogle Scholar
  32. 32.
    X.C. Kong, Y.M. Xu, Z.C. Cui, Z.Y. Li, Y.Q. Liang, Z.H. Gao, S.L. Zhu, X.J. Yang, Defect enhances photocatalytic activity of ultrathin TiO2 (B) nanosheets for hydrogen production by plasma engraving method. Appl. Catal. B 230, 11–17 (2018)CrossRefGoogle Scholar
  33. 33.
    Z.F. Bian, J. Zhu, H.X. Li, Solvothermal alcoholysis synthesis of hierarchical TiO2 with enhanced activity in environmental and energy photocatalysis. J. Photochem. Photobiol. C 28, 72–86 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Zhang, D. Huang, M. Sun, Y. Ouyang, C. Wang, X. Li, L. Chen, B. Su, Promoting effect of nonmetal ion doping and hierarchically 3D dendrimeric architecture for visible-light-active mesoporous TiO2 photocatalyst. Chem. J. Chin. Univ. 38, 471–478 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chaoyang Hu
    • 1
  • Lei E
    • 1
  • Dan Zhao
    • 1
  • Kangkai Hu
    • 1
  • Jin Cui
    • 1
  • Qiumin Xiong
    • 1
  • Zhifeng Liu
    • 1
  1. 1.School of Materials Science and EngineeringTianjin Chengjian UniversityTianjinPeople’s Republic of China

Personalised recommendations