Skip to main content

Advertisement

Log in

Effect of powders on microstructures and mechanical properties for Sn–Ag transient liquid phase bonding in air

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transient liquid phase (TLP) bonding is a promising interconnection technology for high-temperature electronic packaging; however, the development is seriously limited by the long bonding time. Mixed powders with different melting points have been employed as interlayer to reduce the bonding time, but some problems still remain, such as void and undesirable property. In this paper, Cu–Cu substrates were bonded by using Sn–Ag mixed powders for a short time in air, and then the mechanism of void formation was studied, followed by a discussion of the effects of Ag/Sn proportion and powder size on the microstructures and mechanical properties of the joint. After bonded at 260 °C for just 10 min, the liquid Sn in solder paste is totally consumed, and the joint has a high shear strength of 39.5 MPa. The Ag/Sn proportion is vital to joint performance. Sn70Ag joint has the highest shear strength of 72.3 MPa, which is much more excellent than those in other studies due to the denser microstructures with fewer voids. The size of SnAgCu powders affects void size in the joint, and the size of Ag powders has a significant effect on the reaction process, suggesting that too large powders are not preferable. Moreover, the oxidation of small Sn powders should be given to sufficient attention. Finally, TLP bonding with mixed powders has an advantage over foil-based TLP bonding in terms of bonding efficiency and mechanical properties, as the bonding time is much shorter and the shear strength is much higher, which is related to the size and distribution of voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y.N. Zhou, Microjoining and Nanojoining, 1st edn. (CRC Press, New York, 2008)

    Book  Google Scholar 

  2. H.A. Mantooth, M.M. Mojarradi, R.W. Johnson, IEEE Power Electron. Soc. Newslett. 18, 9 (2006)

    Google Scholar 

  3. R.W. Johnson, C. Wang, Y. Liu, J.D. Scofield, IEEE Trans. Electron. Packag. Manuf. 30, 182 (2007)

    Article  CAS  Google Scholar 

  4. V.R. Manikam, K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2001)

    Article  Google Scholar 

  5. V. Chidambaram, J.Hattel,J. Hald, Mater. Des. 31, 4638 (2010)

    Article  CAS  Google Scholar 

  6. V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)

    Article  CAS  Google Scholar 

  7. J. Fan, C.S. Tan, Metall. 4, 71 (2012)

    Google Scholar 

  8. H. Alarifi, A. Hu, M. Yavuz, J. Electron. Mater. 40, 1394 (2011)

    Article  CAS  Google Scholar 

  9. J.F. Yan, G.S. Zou, A.P. Wu, Scripta Mater. 66, 582 (2012)

    Article  CAS  Google Scholar 

  10. W.Y. Sang, M.D. Glover, H.A. Mantooth, K. Shiozaki, J. Micromech. Microeng. 23, 15017 (2012)

    Google Scholar 

  11. E. Möller, A.A. Bajwa, E. Rastjagaev, J.Wilde, IEEE Electron. Compon. Technol. Conf. 64, 1707 (2014)

    Google Scholar 

  12. A.A. Bajwa, Y. Qin, R. Reiner, R. Quay, IEEE Electron. Compon. Technol. Conf. 64, 2181 (2014)

    Google Scholar 

  13. K. Guth, N. Oeschler, L. Boewer, R. Speckels, G. Strotmann, N. Heuck, S. Krasel, Integrat. Power Electron. Syst. 7, 1 (2012)

    Google Scholar 

  14. A. Sharif, M.N. Islam, Y.C. Chan, Mater. Sci. Eng. B 113, 184 (2004)

    Article  Google Scholar 

  15. C.E. Ho, S.C. Yang, C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 155 (2007)

    Article  CAS  Google Scholar 

  16. N.S. Bosco, F.W. Zok, Acta Metall. 53, 2019 (2005)

    CAS  Google Scholar 

  17. M.S. Park, S.L. Gibbons, R. Arróyave, Microelectron. Reliab. 54, 1401 (2014)

    Article  CAS  Google Scholar 

  18. H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, J. Electron. Mater. 41, 2453 (2012)

    Article  CAS  Google Scholar 

  19. C. Hang, Y. Tian, R. Zhang, D.S. Yang, J. Mater. Sci. Mater. Electron. 24, 3905 (2013)

    Article  CAS  Google Scholar 

  20. I. Panchenko, J. Grafe, M. Mueller, K.J. Wolter, IEEE Electron. Syst. Integrat. Technol. Conf. 4, 1 (2012)

    Google Scholar 

  21. G. Ross, H. Xu, V. Vuorinen, M. Paulasto-Krockel, IEEE Electron. Syst. Integrat. Technol. Conf. 5, 1 (2014)

    CAS  Google Scholar 

  22. K.E. Aasmundtveit, T.T. Luu, A.S.B. Vardoy, T.A. Tollefsen, IEEE Electron. Syst. Integrat. Technol. Conf. 5, 1 (2014)

    Google Scholar 

  23. K. Chu, Y. Sohn, C. Moon, Scripta Mater. 109, 113 (2015)

    Article  CAS  Google Scholar 

  24. H.K. Shao, A.P. Wu, Y.D. Bao, Y. Zhao, G.S. Zou, J. Mater. Sci. Mater. Electron. 27, 4839 (2016)

    Article  CAS  Google Scholar 

  25. J.J. Yu, C.A. Yang, Y.F. Lin, C.H. Hsueh, C.R. Kao, J. Alloys Compd. 629, 16 (2015)

    Article  CAS  Google Scholar 

  26. R.A. Gagliano, M.E. Fine, J. Electron. Mater. 32, 1441 (2003)

    Article  CAS  Google Scholar 

  27. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59, 1198 (2011)

    Article  CAS  Google Scholar 

  28. H. Greve, L.Y. Chen, I. Fox, F.P. McCluskey, IEEE Electron. Compon. Technol. Conf. 63, 435 (2013)

    Google Scholar 

  29. H. Greve, S.A. Moeini, F.P. Mccluskey, IEEE Electron. Compon. Technol. Conf. 64, 1314 (2014)

    Google Scholar 

  30. X. Liu, S. He, H. Nishikawa, Scripta Mater. 110, 101 (2016)

    Article  CAS  Google Scholar 

  31. X. Liu, S. He, H. Nishikawa, J. Alloys Compd. 695, 2165 (2016)

    Article  Google Scholar 

  32. G. Ghosh, J. Mater. Res. 19, 1439 (2004)

    Article  CAS  Google Scholar 

  33. P. Fima, Appl. Surf. Sci. 257, 3265 (2011)

    Article  CAS  Google Scholar 

  34. A. Sharif, C.L. Gan, Z. Chen, J. Alloys Compd. 587, 365 (2014)

    Article  CAS  Google Scholar 

  35. H.P.R. Frederikse, R.J. Fields, A. Feldman, J. Appl. Phys. 72, 2879 (1992)

    Article  CAS  Google Scholar 

  36. H.K. Shao, A.P. Wu, Y.D. Bao, Y. Zhao, G.S. Zou, Mater. Sci. Eng. A 680, 221 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Science Foundation of China under Grant No. 51375260, which entitled “Technology and Mechanism of Low Temperature Transient Liquid Phase Bonding”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudian Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Wu, A., Shao, H. et al. Effect of powders on microstructures and mechanical properties for Sn–Ag transient liquid phase bonding in air. J Mater Sci: Mater Electron 29, 10246–10257 (2018). https://doi.org/10.1007/s10854-018-9076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9076-2

Navigation