Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15445–15451 | Cite as

Trap density simulations on CZTSSe solar cells with AMPS-1D

  • J. Conde
  • I. Zuñiga
  • H. Vilchis
  • N. Hérnandez-Como
  • F. Pola-Albores
  • J. Pantoja
Article
  • 115 Downloads

Abstract

This work involves the simulation of Cu2ZnSn(S,Se) (CZTSSe) solar cell in analysis of microelectronic and photonic structures (AMPS-1D) while taking into account previous experimental and theoretical data on CZTS, CZTSe, CZTSSe, CdS and ZnO based devices. We start from the results of the champion CZTSSe solar cell with an efficiency of 12.6%. The simulations were carried out using an AMPS-1D simulator as a function of various parameters such as carrier concentration, density of states, back contact barrier height, and carrier lifetime. The simulations results provide an insight of the deep and tail states of the CZTSSe solar cell, as well as a diagnosis of the constraints limiting the efficiency and a forecast of future record efficiencies for this kind of solar cells. We obtained a complete set of parameters for all the materials of the CZTSSe solar cell. Finally, we show a prediction for CZTSSe solar cell with an efficiency of 16.18%, open-circuit voltage of 564 mV, current density of 39.26 mA cm−2 and fill factor (FF) of 73.1%.

Notes

Acknowledgements

We acknowledge Consejo Nacional de Ciencia y Tecnología project CB-2014/240103 and Cátedras project 876 for financial support. Authors thank Instituto Politécnico Nacional and Universidad de Ciencias y Artes de Chiapas for giving us all the necessary tools for the development of this project. The authors would also like to thank Professor S. Fonash of the Pennsylvania State University for providing the AMPS-1D program used in the simulations. The funding was supported by CONACYT.

References

  1. 1.
    G.A. Meehl, T.F. Stocker, W.D. Collins, A.T. Friedlingstein, A.T. Gaye, J.M. Gregory, et al., Global Climate Projections (Cambridge University, Cambridge, 2007), pp. 747–845Google Scholar
  2. 2.
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285, 692 (1999)CrossRefGoogle Scholar
  3. 3.
    Y. Endoh, Y. Kawakami, T. Taguchi, A. Hiraki, Jpn. J. Appl. Phys. 27, L2199 (1998)CrossRefGoogle Scholar
  4. 4.
    J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993)CrossRefGoogle Scholar
  5. 5.
    A. Ihlal, K. Bouabid, D. Soubane, M. Nya, O. Ait-Taleb-Ali, Y. Amira, A. Outzourhit, G. Nouet, Thin Solid Films 515, 5852 (2007)CrossRefGoogle Scholar
  6. 6.
    Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hilhouse, R. Agrawal, Fabrication of 7.2%. J. Am. Chem. Soc. 132, 17384 (2010)CrossRefGoogle Scholar
  7. 7.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Toodorov, Y. Zhu, M. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  8. 8.
    T.J. Huang, X. Yin, G. Qi, H. Gong, Phys. Status Solidi. (2014).  https://doi.org/10.1002/pssr.201409219 Google Scholar
  9. 9.
    K. Ito, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, 1st edn. (Wiley, Hoboken, 2015)Google Scholar
  10. 10.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. (2016).  https://doi.org/10.1002/pip.2855 Google Scholar
  11. 11.
    S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 96, 021902 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Courel, J.A. Andrade-Arvizu, O. Vigil-Galán, Appl. Phys. Lett. 105, 233501 (2014)CrossRefGoogle Scholar
  13. 13.
    U. Malm, M. Edoff, Sol. Energy Mater. Sol. Cells. 93, 1066 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Fonash, J. Arch, J. Cuiffi, J. Hou, W. Howland, P. McElheny, A. Moquin, M. Rogosky, T. Tran, H. Zhu, F. Rubinelli, A Manual for AMPS-1D for Windows 95/ NT a One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures (The Pennsylvania State University, Williamsport, 1997)Google Scholar
  15. 15.
    J. Conde, I. Mejia, F.S. Aguirre-Tostado, C. Young, M.A. Quevedo-Lopez, Semicond. Sci. Technol. 29, 045006 (2014)CrossRefGoogle Scholar
  16. 16.
    Z. An, A. Xiao-Ru, D. Li-Bing, L. Jin-Mingand, Z. Jian-Lin, Chin. Phys. B 5, 057201 (2011)Google Scholar
  17. 17.
    M. Patel, A. Ray, Physica B 407, 4391 (2012)CrossRefGoogle Scholar
  18. 18.
    B.G. Mendis, M.C.J. Goodman, J.D. Major, A.A. Taylor, K. Durose, D.P. Halliday, J. Appl. Phys. 112, 124508 (2012)CrossRefGoogle Scholar
  19. 19.
    N.S. Han, H.S. Shim, J.H. Seo, S.Y. Kim, S.M. Park, J.K. Song, J. Appl. Phys. 107, 084306 (2010)CrossRefGoogle Scholar
  20. 20.
    N. Hernández-Como, A. Morales-Acevedo, Sol. Energy Mater. Sol. Cells. 94, 62 (2010)CrossRefGoogle Scholar
  21. 21.
    I. Camps, J. Coutinho, M. Mir, A.F. da Cunha, M.J. Rayson, P.R. Briddon, Semicond. Sci. Technol. 27, 115001 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Cozza, C.M. Ruíz, D. Duché, J.J. Simon, L. Escoubas, Modeling the back contact of CuZnSnSe solar cells. IEEE J. Photovol. 6, 1292 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Parisi, T. Dalibor, A. Avellan-Hampe, Thin Solid Film 535, 331 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Cerdeira, M. Estrada, R. García, A. Ortiz-Conde, F.J. García Sánchez. Solid State Electron. 45, 1077 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Shur, M. Hack, J. Appl. Phys. 55, 3831 (1984)CrossRefGoogle Scholar
  26. 26.
    Silvaco, ATLAS, Version 5.21.2.R (Silvaco, Santa Clara, 2014)Google Scholar
  27. 27.
    M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, H.V. Wenckstern, G. Biehne, D. Spemann, M. Grundmann, Solid State Commun. 137, 417 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Kanevce, I. Repins, S.-H. Wei, Sol. Energy Mater. Sol. Cells. 133, 119 (2015)CrossRefGoogle Scholar
  29. 29.
    M.E. Erkan, V. Chawla, M.A. Scarpulla, J. Appl. Phys. 119, 194504 (2016)CrossRefGoogle Scholar
  30. 30.
    P.V. Mieghem, Rev. Mod. Phys. 64, 755 (1992)CrossRefGoogle Scholar
  31. 31.
    T. Gokmen, O. Gunawan, D.B. Mitzi, J. Appl. Phys. 114, 114511 (2013)CrossRefGoogle Scholar
  32. 32.
    D. Aaron, R. Barkhouse, O. Gunawan, T.K. Todorov, D.B. Mitzi, Prog. Photovolt. Res. Appl. 20, 6 (2012)CrossRefGoogle Scholar
  33. 33.
    T.K. Toodorov, J. Tang, S. bag, O. Guanawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 3, 34 (2013)CrossRefGoogle Scholar
  34. 34.
    M.A. Green, Solid State Electron. 24, 788 (1981)CrossRefGoogle Scholar
  35. 35.
    P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Solidi (RRL) Rapid Res Lett (2014).  https://doi.org/10.1002/pssr.201409520 Google Scholar
  36. 36.
    B. Ananthoju, J. Mohapatra, M.K. Jangid, D. Bahadur, N.V. Medhekar, M. Aslam, Sci. Rep. (2016).  https://doi.org/10.1038/srep35369 Google Scholar
  37. 37.
    W. Li, Z. Su, J.M.R. Tan, S.Y. Chiam, H.L. Seng, S. Magdasi, L.H. Wong, Chem. Mater. 29, 4273 (2017).  https://doi.org/10.1021/acs.chemmater.7b00418 CrossRefGoogle Scholar
  38. 38.
    H. Tampo, K.M. Kim, S. Kim, H. Shibata, S. Niki, J. Appl. Phys. 122, 023106 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigación e Innovación en Energías RenovablesCONACYT – Universidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico
  2. 2.Centro de Nanociencias Micro y NanotecnologíasInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations