Advertisement

Rice-like Ag/Al2O3 nanocomposites preparation from AlOOH nanostructures synthesized via a facile hydrothermal route for azo dyes photocatalytic degradation and Pb2+ adsorption

  • Ali Mohammad Latifi
  • Morteza Mirzaei
  • Mehdi Mousavi-Kamazani
  • Zabihullah Zarghami
Article
  • 61 Downloads

Abstract

Herein, various morphologies of AlOOH (boehmite) nanostructures were successfully synthesized via a facile hydrothermal route. The obtained AlOOH nanostructures were utilized as a novel starting reagent with AgNO3 and cochineal powder for synthesizing Ag–Al2O3 nanocomposites via a thermal decomposition method. The prepared nanocomposites were applied as photocatalyst for decolorization of acid violet 7 as an azo dye under visible light irradiation. The results showed the rice-like sample (A3) has the highest photodegradation efficiency due to its more surface to volume ratio. Moreover, the synthesized AlOOH nanostructures were directly calcined to transform into rice-like Al2O3 nanostructures as an adsorbent for Pb2+ ions removing from aqueous medium. The rice-like Al2O3 (sample B3) as an adsorbent showed a remarkable adsorption capacity (250 mg/g) compared to other samples with different morphologies.

Notes

Acknowledgements

This work was supported by the Applied Biotechnology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran.

References

  1. 1.
    Y. Piña-Pérez, F. Tzompantzi-Morales, R. Pérez-Hernández, R. Arroyo-Murillo, P. Acevedo-Peña, R. Gómez-Romero, Fuel 198, 11 (2017)CrossRefGoogle Scholar
  2. 2.
    M.T. Taghizadeh, F. Nejhad-babaie Kheljan, M. Vatanparast, J. Mater. Sci.: Mater. Electron. 29, 978 (2018)Google Scholar
  3. 3.
    K.Y. Chong, C.H. Chia, S. Zakaria, M.S. Sajab, J. Environ. Chem. Eng. 2, 2156 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Vatanparast, M.T. Taghizadeh, J. Mater. Sci.: Mater. Electron. 27, 54 (2016)Google Scholar
  5. 5.
    L. Zhang, W. Lu, L. Yan, Y. Feng, X. Bao, J. Ni, X. Shang, Y. Lv, Microporous Mesoporous Mater. 119, 208 (2009)CrossRefGoogle Scholar
  6. 6.
    J.B. Zhou, Y. Cheng, J.G. Yu, G. Liu, J. Mater. Chem. 21, 19353 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Tvarit, S. Supratim, D. Bhattacharya, B.B. Khatua, Polym. Plast. Technol. 52, 1557 (2013)CrossRefGoogle Scholar
  8. 8.
    K. Sharma, S.S. Islam, Sens. Actuators B 237, 443 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Al-Bayer, A. Zihlif, B. Lahlouh, Z. Elimat, G. Ragosta, J. Mater. Sci.: Mater. Electron. 24, 2866 (2013)Google Scholar
  10. 10.
    W.Y. Wang, K. Zhang, Y.Q. Yang, H. Liu, Zh..Q. Qiao, H.A. Luo, Microporous Mesoporous Mater. 193, 47 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Hartmann, A. Sachse, A. Galarneau, Materials 5, 336 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Bleta, P. Alphonse, L. Pin, M. Gressier, M.J. Menu, J. Colloid Interface Sci. 367, 120 (2012)CrossRefGoogle Scholar
  13. 13.
    B.E. Yoldas, A transparent porous alumina. Am. Ceram. Soc. Bull. 54, 286 (1975)Google Scholar
  14. 14.
    D. Panias, A. Krestou, Powder Technol. 175, 163 (2007)CrossRefGoogle Scholar
  15. 15.
    T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 2615 (1992)CrossRefGoogle Scholar
  16. 16.
    T. He, L. Xiang, S. Zhu, Langmuir 24, 8284 (2008)CrossRefGoogle Scholar
  17. 17.
    J.B. Zhou, L. Wang, Zh Zhang, J.G. Yu, J. Colloid Interface Sci. 394, 509 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Palcheva, L. Kaluža, A. Spojakina, K. Jiratova, G. Tyuliev, Chin. J. Catal. 33, 952 (2012)CrossRefGoogle Scholar
  19. 19.
    K.H. Leong, P. Monash, S. Ibrahim, P. Saravanan, Sol. Energy 101, 321 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Nazari, S. Riahi, Mater. Sci. Eng. A 528, 1183 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Sato, S. Goto, Q. Tang, S. Yin, J. Mater. Sci. 43, 2247 (2008)CrossRefGoogle Scholar
  22. 22.
    J.N. Solanki, Z.V.P. Murthy, Ind. Eng. Chem. Res. 50, 7338 (2011)CrossRefGoogle Scholar
  23. 23.
    X. She, M. Flytzani-Stephanopoulos, J.Catal. 237, 79 (2006)CrossRefGoogle Scholar
  24. 24.
    R.K. Sharma, P. Jeevanandam, Ceram. Inter. 39, 3337 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Haji, T. Ebadzadeh, M.H. Amin, M. Kazemzad, T. Talebi, Ceram. Inter. 38, 867 (2012)CrossRefGoogle Scholar
  26. 26.
    B.M. Abu-Zied, A.M. Asiri, Thermochim. Acta 581, 110 (2014)CrossRefGoogle Scholar
  27. 27.
    S.M. Hosseinpour-Mashkani, A. Sadeghinia, Z. Zarghami, K. Motevalli, J. Mater. Sci.: Mater. Electron. 27, 365 (2016)Google Scholar
  28. 28.
    M. Goudarzi, Z. Zarghami, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 9789 (2016)Google Scholar
  29. 29.
    M. Ebadi, K. Motevalli, M. Ebadi, Z. Salehi, J. Mater. Sci.: Mater. Electron. 28, 13024 (2017)Google Scholar
  30. 30.
    Z. Zarghami, M. Ramezani, M. Maddahfar, J. Mater. Sci.: Mater. Electron. 26, 5884 (2015)Google Scholar
  31. 31.
    M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, J. Phys. Chem. C 120, 2096 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, O. Amiri, RSC Adv. 6, 39801 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Palcheva, L. Kaluza, A. Spojakina, K. Jiratova, G. Tyuliev, Chin. J. Catal. 33, 952 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ali Mohammad Latifi
    • 1
  • Morteza Mirzaei
    • 1
  • Mehdi Mousavi-Kamazani
    • 2
  • Zabihullah Zarghami
    • 1
  1. 1.Applied Biotechnology Research CenterBaqiyatallah University of Medical ScienceTehranIran
  2. 2.New Technology FacultySemnan UniversitySemnanIran

Personalised recommendations