Novel rattle-type magnetic Fe3O4@Ag@H-BiOCl photocatalyst with enhanced visible light-driven photocatalytic activity

  • Jianhui Shi
  • Shuting Feng
  • Tian Chen
  • Fan Wu
  • Wenbo Guo
  • Yuzhen Li
  • Peiting Zhao
Article
  • 11 Downloads

Abstract

A novel rattle-type magnetic Fe3O4@Ag@H-BiOCl nanocomposite was prepared successfully by a facile solvothermal method. The structures, morphologies, magnetic and electronic properties and photocatalytic performance of as-prepared products were successfully characterized by multiple techniques. The results show that the composites exhibit an obvious cavity, excellent magnetic properties, largely increased electron–hole separation efficiency and visible-light absorption. Due to the existence of an inner cavity, this novel photocatalyst exhibits excellent adsorption and transfer performance to organic pollutants in aqueous systems. The photocatalytic activity of the materials was evaluated by the photocatalytic degradation of rhodamine B (RhB) and antibiotic agent ciprofloxacin (CIP). It was found that the Fe3O4@Ag@H-BiOCl exhibited much better photocatalytic performance than pure BiOCl, which displayed the degradation rates of RhB and CIP were 99.5 and 98.3% after 120 min under visible light irradiation, respectively. The enhanced photocatalytic activities may result from the synergetic promoting effect of surface plasmon resonance of Ag and facet-dependent oxygen vacancy of BiOCl, which significantly improves visible-light absorption capacity and separation rate of charge carriers. A possible mechanism of the enhancement of visible photocatalytic activity was proposed. This study provides a promising approach to improve visible-light-response and recycle photocatalysts to treat waste water.

Notes

Acknowledgements

This work was supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2015128), and Qualified Personnel Foundation of Taiyuan University of Technology (QPFT) (No: tyutrc-201326c) and the Shanxi Provincial Key Research and Development Plan (general) Social Development Project (201703D321009-5).

References

  1. 1.
    K.X. Li, Z.X. Zeng, L.S. Yan, S.L. Luo, X.B. Luo, M.X. Huo, Y.H. Guo, Appl. Catal. B 165, 428–437 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Li, N. Zhang, Y. Yang, G.Z. Wang, D.H.L. Ng, Langmuir 30(29), 8965–8972 (2014)CrossRefGoogle Scholar
  3. 3.
    X.J. Zhou, G. Zhang, C.L. Shao, X.H. Li, X. Jiang, Y.C. Liu, Ceram. Int. 43(17), 15699–15707 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Tahir, C.B. Cao, F.K. Butt, S. Butt, F. Idrees, Z. Ali, I. Aslam, M. Tanveer, A. Mahmood, N. Mahmood, CrystEngComm. 16(9), 1825–1830 (2014)CrossRefGoogle Scholar
  5. 5.
    J.Z. Li, Y. Ma, Z.F. Ye, M.J. Zhou, H.Q. Wang, C.C. Ma, D.D. Wang, P.W. Huo, Y.S. Yan, Appl. Catal. B 204, 224–238 (2017)CrossRefGoogle Scholar
  6. 6.
    S.Y. Chen, R. Yan, X.L. Zhang, Appl. Catal. B 209, 320–328 (2017)CrossRefGoogle Scholar
  7. 7.
    S.W. Gao, C.S. Guo, S. Hou, L. Wan, Q. Wang, J.P. Lv, Y. Zhang, J.F. Gao, W. Meng, J. Xu, J. Hazard. Mater. 331, 1–12 (2017)CrossRefGoogle Scholar
  8. 8.
    C.L. Yu, F.F. Cao, G. Li, R.F. Wei, J.C. Yu, R.C. Jin, Q.Z. Fan, C.Y. Wang, Sep. Purif. Technol. 120, 110–122 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, J. Sunarso, B. Zhao, C.H. Zhe, G.H. Chen, Ceram. Int. 43(17), 15769–15776 (2017)CrossRefGoogle Scholar
  10. 10.
    X.X. Wei, C.M. Chen, S.Q. Guo, F. Guo, X.M. Li, X.X. Wang, H.T. Cui, L.F. Zhao, W. Li, J. Mater. Chem. A 2(13), 13747–13747 (2014)CrossRefGoogle Scholar
  11. 11.
    D.M. Chen, K.W. Wang, W.Z. Hong, R.L. Zong, W.Q. Yao, Y.F. Zhu, Appl. Catal. B 166, 366–373 (2015)CrossRefGoogle Scholar
  12. 12.
    M.Q. Yan, Y. Shen, G.Y. Zhang, H. Bi, Mater. Sci. Eng. C 58, 568–575 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Cai, X. Wu, Y. Li, Y. Lin, H. Yang, J. Colloid. Interface Sci. 514, 791–800 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Tahir, C.B. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, ACS Appl. Mater. Inter. 6(2), 1258–1265 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Sun, Y. Yin, P. Lv, W. Su, L. Zhang, RSC Adv. 8(8), 3964–3973 (2018)CrossRefGoogle Scholar
  16. 16.
    Y.L. Chang, Z.X. Liu, X.F. Shen, B. Zhu, D.K. Macharia, Z.G. Chen, L.S. Zhang, J. Hazard. Mater. 334, 1188–1197 (2018)CrossRefGoogle Scholar
  17. 17.
    X.X. Wang, S.S. Wang, W.D. Hu, J. Cai, L.H. Zhang, L.Z. Dong, L.H. Zhao, Y.M. He, Mater. Lett. 115(5), 53–56 (2014)CrossRefGoogle Scholar
  18. 18.
    J.S. Zhang, M.W. Zhang, S. Lin, X.Z. Fu, X.C. Wang, J. Catal. 310(1), 24–30 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Zhu, Z.Y. Lu, X.X. Zhao, Y.S. Yan, W.D. Shi, D.D. Wang, L.L. Yang, X. Lin, Z.F. Hua, Y. Liu, RSC Adv. 5(51), 40726–40736 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Mitra, H.Y. Aziz, Adv. Powder Technol. 29(1), 94–105 (2018)CrossRefGoogle Scholar
  21. 21.
    G.C. Xi, B. Yue, J.Y. Cao, J.H. Ye, Chem.-Eur. J. 17(18), 5145–5154 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Wang, S.H. Cui, X.D. Yang, W.T. Bi, Talanta 132, 922–928 (2015)CrossRefGoogle Scholar
  23. 23.
    S.K. Park, T. Ishikawa, Y. Tokura, Phys. Rev. B 58(7), 3717–3720 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, J. Phys. Chem. C 117(49), 26135–26143 (2013)CrossRefGoogle Scholar
  25. 25.
    F.S. Guo, Y.D. Hou, A.M. Asiri, X.C. Wang, Chem. Commun. 53, 13221–13224 (2017)CrossRefGoogle Scholar
  26. 26.
    J.T. Lee, Y.Y. Zhao, S. Thieme, H. Kim, M. Oschatz, L. Borchardt, A. Magasinski, W.I. Cho, S. Kaskel, G. Yushin, Adv. Mater. 25(33), 4573–4579 (2013)CrossRefGoogle Scholar
  27. 27.
    X.Q. Xu, C.H. Deng, M.X. Gao, W.J. Yu, P.Y. Yang, X.M. Zhang, Adv. Mater. 18(24), 3289–3293 (2006)CrossRefGoogle Scholar
  28. 28.
    L. Li, A.W. Zhao, D.P. Wang, H.Y. Guo, H.H. Sun, Q.Y. He, J. Nanopart. Res. 18(7), 178–188 (2016)CrossRefGoogle Scholar
  29. 29.
    W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  30. 30.
    J.H. Shi, L.Z. Gao, S. Gao, Y.L. Wen, Y.H. Gao, Synth. React. Inorg. Met. 46(7), 1102–1108 (2016)CrossRefGoogle Scholar
  31. 31.
    J.H. Shi, L.Z. Tong, D.M. Liu, H. Yang, J. Nanopart. Res. 14(3), 743–751 (2012)CrossRefGoogle Scholar
  32. 32.
    D.H. Chen, C.J. Chen, J. Mater. Chem. 12(5), 1557–1562 (2002)CrossRefGoogle Scholar
  33. 33.
    D.H. Wang, G.Q. Gao, Y.W. Zhang, L.S. Zhou, A.W. Xu, W. Chen, Nanoscale 4, 7780–7785 (2012)CrossRefGoogle Scholar
  34. 34.
    B.J. Coppa, R.F. Davis, R.J. Nemanich, Appl. Phys. Lett. 82(3), 400–402 (2003)CrossRefGoogle Scholar
  35. 35.
    W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, W.W. Li, Chem. Eng. J. 180, 9–18 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Weng, J. Hu, M. Lu, Appl. Catal. B 163, 205–213 (2015)CrossRefGoogle Scholar
  37. 37.
    H.H. Yin, K. Yu, C.Q. Song, R. Huang, Z.Q. Zhu, ACS Appl. Mater. Interface 6(17), 14851–14860 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jianhui Shi
    • 1
  • Shuting Feng
    • 1
  • Tian Chen
    • 1
  • Fan Wu
    • 1
  • Wenbo Guo
    • 1
  • Yuzhen Li
    • 1
  • Peiting Zhao
    • 1
  1. 1.College of Environmental Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations