Skip to main content
Log in

Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An inexpensive light weight radiation shielding materials have been fabricated by one step, facile technique avoiding toxic volatile organic solvents. Herein, we adopted ‘dip coating and drying’ method to prepare high surface area specialty conductive black (Ketjen-600JD) loaded polyurethane (PU) composite foam. The non-ionic surfactant stabilized black particles showed promising improvement in electrical conductivity (exceptionally low percolation threshold concentration) and water durability. The morphological analysis from electron microscopy and 3D micro computed tomography supports uniform conducting pathway formation on to the cell walls of the cellular PU system. The PU foam surprisingly showed no severe drop of porosity even after dipping in high carbon black dispersion. This efficiently supports the micro structural integrity of the foam composites which has been normally retained as the pristine foam. The EMI shielding value of the composite foam for only 2 wt% carbon black shows 65.6 dB which is amazingly high for other reported values till date. This can be said that the prepared conducting foam is suitable alternative for low cost durable EMI shielding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin film of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)

    CAS  Google Scholar 

  2. K. Zhang, X. Gao, Q. Zhang et al., Pitch carbon coating graphene/carbon nanotubes lightweight composite and their excellent microwave absorption capacity. J. Mater. Sci.: Mater. Electron. 28(2), 1352–1358 (2017)

    CAS  Google Scholar 

  3. J.C. Franklin, S.A. Myers, B.M. Rappoport et al., Flexible electronic devices. U.S. Patent 8,929,085, 6 Jan 2015

  4. S. Geetha, K.K.S. Kumar, C.R.K. Rao et al., EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)

    CAS  Google Scholar 

  5. Y. Bhattacharjee, I. Arief, S. Bose, Recent trends in multi-layered architecture towards screening electromagnetic radiation: challenges and perspectives. J. Mater. Chem. C 5, 7390–7403 (2017)

    CAS  Google Scholar 

  6. A.H. Frey, Headaches from cellular telephones: are they real and what the implication. Environ. Health Perspect. 106(3), 101–103 (1998)

    CAS  Google Scholar 

  7. X.S. Hu, Y. Shen, L.S. Lu et al., Enhanced electromagnetic interference shielding effectiveness of ternary PANI/CuS/RGO composites. J. Mater. Sci.: Mater. Electron. 28(9), 6865–6872 (2017)

    CAS  Google Scholar 

  8. M. Faisal, S. Khasim, Broadband electromagnetic shielding and dielectric properties of polyaniline-stannous composites. J. Mater. Sci.: Mater. Electron. 24(7), 2202–2210 (2013)

    CAS  Google Scholar 

  9. A. Saboor, A.N. Khan, H.M. Cheema et al., Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile. J. Mater. Sci.: Mater. Electron. 27(9), 9634–9641 (2016)

    CAS  Google Scholar 

  10. R.H. Guo, S.Q. Jiang, C.W.M. Yuen et al., Microstructure and electromagnetic interference shielding effectiveness of electroless Ni-P plated polyester fabric. J. Mater. Sci.: Mater. Electron. 20(8), 735–740 (2009)

    CAS  Google Scholar 

  11. N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. A 31(10), 1069–1081 (2000)

    Google Scholar 

  12. B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016)

    CAS  Google Scholar 

  13. D. Xing, L. Lu, W. Tang et al., An ultra-thin multilayer carbon fiber reinforced composite for absorption-dominated EMI shielding application. Mater. Lett. 207, 165–168 (2017)

    CAS  Google Scholar 

  14. A.V. Menon, G. Madras, S. Bose, Phase specific dispersion of functional nanoparticles in soft nanocomposites resulting in enhanced electromagnetic screening ability dominated by absorption. Phys. Chem. Chem. Phys. 19, 467–479 (2017)

    CAS  Google Scholar 

  15. B. Wen, M. Cao, M. Lu et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)

    CAS  Google Scholar 

  16. X. Zhou, G. Zhao, H. Niu et al., Mechanical and electrical properties of nanocomposites containing hybrid fillers of disk-like copper and conductive carbon black. J. Mater. Sci.: Mater. Electron. 22, 1737 (2011)

    CAS  Google Scholar 

  17. X. Yan, J. Gu, G. Zheng et al., Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103, 315–327 (2016)

    CAS  Google Scholar 

  18. Y.S. Tang, J. Kong, J.W. Gu et al., Reinforced cyanate ester resins with carbon nanotubes: surface modification reaction, reaction activity and mechanical properties analyses. Polym. Plast. Technol. Eng. 48, 359–366 (2009)

    CAS  Google Scholar 

  19. J. Gu, C. Liang, X. Zhao et al., Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 139, 83–89 (2017)

    CAS  Google Scholar 

  20. J. Gu, N. Li, L. Tian et al., High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 5, 36334–36339 (2015)

    CAS  Google Scholar 

  21. J. Dou, Q. Zhang, M. Ma et al., Fast fabrication of epoxy-functionalized magnetic polymer core-shell microspheres using glycidyl methacrylate as monomer via photo-initiated miniemulsion polymerization. J. Magn. Magn. Mater. 324, 3078–3082 (2012)

    CAS  Google Scholar 

  22. F. Fan, B. Zhang, Y. Cao et al., Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices. Nanoscale 9, 10610–10618 (2017)

    CAS  Google Scholar 

  23. J. Jeddi, A.A. Katbab, The electrical conductivity and EMI shielding properties of polyurethane foam/silicone rubber/carbon black/nanographite hybrid composites. Polym. Compos. (2017). (https://doi.org/10.1002/pc.24363)

    Article  Google Scholar 

  24. P. Bhawal, S. Ganguly, T.K. Das et al., Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness. Polym. Adv. Technol. 29(1), 95–110 (2017)

    Google Scholar 

  25. S. Mondal, S. Ganguly, P. Das et al., Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Compos. B 119, 41–56 (2017)

    CAS  Google Scholar 

  26. M.E. Spahr, R. Gilardi, D. Bonacchi, in Encyclopedia of Polymers and Composites. Carbon black for electrically conductive polymer applications (Springer, Berlin, 2014), pp. 1–20

  27. H.B. Zhang, Q. Yan, W.G. Zheng et al., Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011)

    CAS  Google Scholar 

  28. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005)

    CAS  Google Scholar 

  29. Z. Liu, G. Bai, Y. Huang et al., Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45(4), 821–827 (2007)

    CAS  Google Scholar 

  30. S.T. Hsiao, C.C.M. Ma, H.W. Tien et al., Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013)

    CAS  Google Scholar 

  31. B.P. Sahoo, K. Naskar, D.K. Tripathy, Conductive carbon black-filled ethylene acrylic elastomer vulcanizets: physico-mechanical, thermal, and electrical properties. J. Mater. Sci. 47(5), 2421–2433 (2012)

    CAS  Google Scholar 

  32. Y. Wu, Z. Wang, X. Liu et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017)

    CAS  Google Scholar 

  33. J.M. Kim, Y. Lee, M.G. Jang et al., Electrical conductivity and EMI shielding effectiveness of polyurethane foam-conductive filler composites. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44373

    Article  Google Scholar 

  34. Q. Song, F. Ye, X. Yin et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. (2017). https://doi.org/10.1002/adma.201701583

    Article  Google Scholar 

  35. S. Ghosh, S. Remanan, S. Mondal et al., An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 344, 138–154 (2018)

    CAS  Google Scholar 

  36. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch et al., Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)

    CAS  Google Scholar 

  37. H. Liu, Y. Li, K. Dai et al., Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4, 157–166 (2016)

    CAS  Google Scholar 

  38. S. Ganguly, D. Ray, P. Das et al., Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason. Sonochem. 42, 212–227 (2018)

    CAS  Google Scholar 

  39. D.X. Yan, H. Pang, B. Li et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015)

    CAS  Google Scholar 

  40. A. Ameli, M. Nofar, S. Wang et al., Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 6(14), 11091–11100 (2014)

    CAS  Google Scholar 

  41. J.M. Thomassin, C. Pagnoulle, L. Bednarz et al., Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 18, 792–796 (2008)

    CAS  Google Scholar 

  42. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene-PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011)

    CAS  Google Scholar 

  43. J. Yang, Y. Yang, H. Duan et al., Light-weight epoxy/nickel coated carbon fibers conductive foams for electromagnetic interference shielding. J. Mater. Sci.: Mater. Electron. 28(8), 5925–5930 (2016)

    Google Scholar 

  44. J. Ling, W. Zhai, W. Feng et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013)

    CAS  Google Scholar 

  45. D.X. Yan, H. Pang, L. Xu et al., Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology 25(14), 145705 (2014)

    Google Scholar 

  46. S. Mondal, S. Ganguly, M. Rahaman et al., A strategy to achieve enhanced electromagnetic interference at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elestomeric matrix. Phys. Chem. Chem. Phys. 18, 24591–24599 (2016)

    CAS  Google Scholar 

  47. M.C. Hermant, M. Verhulst, A.V. Kyrylyuk et al., The incorporation of single-walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold. Compos. Sci. Technol. 69(5), 656–662 (2009)

    CAS  Google Scholar 

  48. M.S. Cao, J. Yang, W.L. Song, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012)

    CAS  Google Scholar 

  49. M. Han, X. Yin, S. Ren et al., Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Adv. 6(8), 6467–6474 (2016)

    CAS  Google Scholar 

  50. S. Mondal, S. Ghosh, S. Ganguly et al., Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater. Res. Exp. 4(10), 105039 (2017)

    Google Scholar 

  51. J.Z. He, X.X. Wang, Y.L. Zhang et al., Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4(29), 7130–7140 (2016)

    CAS  Google Scholar 

  52. S.A. Schelkunoff, The electromagnetic theory of coaxial transmission lines and cylindrical shields. Bell Labs Tech. J. 13(4), 532–579 (1934)

    Google Scholar 

  53. B.O. Lee, W.J. Woo, H.S. Park et al., Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF. J. Mater. Sci. 37(9), 1839–1843 (2002)

    CAS  Google Scholar 

  54. A. Fletcher, M.C. Gupta, K.L. Dudley et al., Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications. Compos. Sci. Technol. 70(6), 953–958 (2010)

    CAS  Google Scholar 

  55. B. Shen, W. Zhai, M. Tao et al., Lightweight, multifunctional Polyetherimide/Graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013)

    CAS  Google Scholar 

  56. Z. Wang, L. Wu, J. Zhou et al., Chemoselectivity- induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 6(21), 12298–12302 (2014)

    CAS  Google Scholar 

  57. L. Kong, X. Yin, X. Yuan et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185–193 (2014)

    CAS  Google Scholar 

  58. J. Luo, P. Shen, W. Yao et al., Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res. Lett. 11, 141 (2016)

    CAS  Google Scholar 

  59. W. Song, M. Cao, Z. Hou et al., High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61(2), 201–204 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Kalpana Chawla Space Technology Cell (KCSTC), IIT Kharagpur and Indian Space Research Organization (ISRO), Trivandrum (Grand No. IIT/KCSTC/Chair/NEW/P/16-17/01) for providing financial support and all research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Ch. Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Ganguly, S., Remanan, S. et al. Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J Mater Sci: Mater Electron 29, 10177–10189 (2018). https://doi.org/10.1007/s10854-018-9068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9068-2

Navigation