Skip to main content
Log in

Electronic structure and optical properties of SnO2:F from PBE0 hybrid functional calculations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, electronic band structure and optical properties of SnO2 and SnO2:F are investigated as a function of fluorine (F) concentration by first-principles calculation using PBE0 hybrid exchange–correlation functional. Various supercells were constructed and optimized corresponding to different F content. An increase in the lattice parameters is obtained with increasing F level. Two different Sn–F bond lengths behavior are observed, where one of them is more sensible to F concentration. Löwdin charge analysis, related to charge transfer of Sn(0), Sn (1), O(5) and F(5), is presented and discussed, including the contribution of empty orbits 5d and 4f from Sn atoms. SnO2:F materials display characteristics of the n-type semiconductor, occupied states contributed mostly from hybridized Sn 5s, Sn 5p, O 2s and O 2p states in the conduction band increase with an increase in F concentration. Density of states (DOS) diagram of SnO2:F shows a band gap-like behavior inside the conduction band. The F dependence of the direct band gap, optical band gap, band gap-like and Burstein–Moss shift are calculated and discussed. A high concentration of fluorine (around 16 at.%) shows a transformation from direct to an indirect band gap. The imaginary dielectric function presents intra-band transition around Fermi level corresponding to Drude´s electrons. Also, inter-band transitions from valence band to conduction band and from occupied conduction band to unoccupied conduction band are evident from the optical spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films thickness: the role of thickness. J. Semicond. 32(5), 053001–053001 (2011)

    Article  Google Scholar 

  2. E. Ching-Prado, A. Watson, H. Miranda, I. Abrego, Optical properties of multilayers TiO2/SnO2:F thin films. MRS Adv. 1(46), 3133 (2016)

    Article  Google Scholar 

  3. Y. Zhang, J.X. Tian, W. Zhang, Cai, The studies on the role of fluorine in SnO2:F films prepared by spray pyrolysis with SnCl4. J. Optoelectron. Adv. Mater. 13(1), 89 (2011)

    Google Scholar 

  4. Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by Magnetron Sputtering. Coatings 4, 732 (2014)

    Article  Google Scholar 

  5. J.M. Rodríguez, A. Watson, I. Abrego, J. Ardisson, C.A. Samudio, E. Ching-Prado, A water vapor sensor application of Sn1−xFexO2−δ fibres. Mater. Res. Soc. Symp. Proc. (2015). https://doi.org/10.1557/opl.2015.788

    Google Scholar 

  6. A.A. Yadava, E.U. Masumdar, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C. H. Bhosale, Electrical, structural and optical properties of SnO2:F thin films: effect of the substrate temperature. J. Alloy. Compd. 488, 350 (2009)

    Article  Google Scholar 

  7. A. Agashe, S. Mahamuni, Competitive effects of film thickness and growth rate in spray pyrolytically deposited fluorine-doped tin dioxide films. Thin Solid Films 518, 4868 (2010)

    Article  Google Scholar 

  8. M. Ganose, D.O. Scanlon, Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Mater. Chem. C 4, 1467 (2016)

    Article  Google Scholar 

  9. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  10. J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J. Chem. Phys. 123, 062201 (2005)

    Article  Google Scholar 

  11. C. Franchini, Hybrid functionals applied to perovskites. J. Phys. 26, 253202 (2014)

    Google Scholar 

  12. P. Barbarat, S.F. Matar, First-principles investigations of the electronic, optical and chemical bonding properties of SnO2. Comput. Mater. Sci. 10, 368 (1998)

    Article  Google Scholar 

  13. J. Xu, S. Huang, Z. Wang, First principle study on the electronic structure of fluorine-doped SnO2. Solid State Comm. 149, 527 (2009)

    Article  Google Scholar 

  14. D. Xing, P. Wang, C. Zhang, The electronic structures and optical properties in nitrogen-doped SnO2, in Proceedings of 4th Annual International Conference on Material Science and Engineering, vol. 0554 (2016)

  15. P. Lu, Y. Shen, Z. Yu, L. Zhao, Q. Li, S. Ma, L. Han, Y. Liu, Electronic structure and optical properties of antimony-doped SnO2 from first-principle study. Commun. Theor. Phys. 57, 145 (2012)

    Article  Google Scholar 

  16. Y. Li, Y. Zhang, S. Cui, Y. Ding, J. Tang, R. Zhang, Electronic structure and optical properties of oxygen vacancy and Ag-doped SnO2 sensors. Chem. Eng. Trans. 51, 1285 (2016)

    Google Scholar 

  17. J. Robertson, Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C, 12, 4767 (1979)

    Article  Google Scholar 

  18. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J.Phys. 21, 395502 (2009)

    Google Scholar 

  19. J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982 (1996)

    Article  Google Scholar 

  20. Q. Fan, J. Yang, Y. Yu, J. Zhang, J. Cao, Electronic structure and optical properties of Al-doped ZnO. Chem. Eng. Trans. 46, 985 (2015)

    Google Scholar 

  21. Y. Jinliang, Q. Chong, Electronic structure and optical properties of F-doped β-Ga2O3 from first principles. J. Semicond. 37(4), 042001–042002 (2016)

    Article  Google Scholar 

  22. W.H. Baur, Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2 und MgF2. Acta Crystallogr. A 9(6), 515 (1956)

    Article  Google Scholar 

  23. Z.Y. Banyamin, P.J. Kell, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732 (2014)

    Article  Google Scholar 

  24. D. Tatar, B. Düzgün, The relationship between the doping levels and some physical properties of SnO2:F thin films spray-deposited on optical glass. Pramana 79(1), 137 (2012)

    Article  Google Scholar 

  25. W.Z. Samad, M.M. Salleh, A. Shafiee, M.A. Yarmo, Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malays. 40(3), 251 (2011)

    Google Scholar 

  26. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32, 751–767 (1976) (Database of ionic radii, http://abulafia.mt.ic.ac.uk/shannon/)

  27. Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M. Park, L. Jiang, J.H. Kim, S. Dou, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014)

    Article  Google Scholar 

  28. S. Wu, S. Yuan, L. Shi, Y. Zhao, J. Fang, Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J. Colloid Interface Sci. 346, 12 (2010)

    Article  Google Scholar 

  29. R. Leite, J.A. Cerri, E. Longo, J.A. Varela, Sintering of undoped SnO2, Ceramica 49, 87 (2003)

    Article  Google Scholar 

  30. J.M. Themlin, R. Sporken, J. Darville, R. Caudano, J.M. Gilles, R.L. Johnson, Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states. Phys. Rev. B 42, 11914 (1990)

    Article  Google Scholar 

  31. M. Weidner, Fermi level determination in tin oxide by photoelectron spectroscopy, Thesis, Technischen Universität Darmstadt, 2016

  32. A. Marini, C. Hogan, M. Grüning, D. Varsano, Yambo: an ab initio tool for excited state calculations. Comput. Phys. Comm. 180, 1392 (2009)

    Article  Google Scholar 

  33. V.M. Yubero, A.R. Jimenez, Gonzalez-Elipe, Optical properties and electronic transitions of SnO2 thin films by reflection electron energy loss spectroscopy. Surf. Sci. 400, 116 (1998)

    Article  Google Scholar 

  34. P.D. Borges, L.M.R. Scolfaro, H.W.L. Alves, E.F. da Silva, DFT study of the electronic, vibrational, and optical properties of SnO2. Theor. Chem. Acc. 126, 39 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Col-11-014 SENACyT Grants from Panama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ching-Prado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ching-Prado, E., Samudio, C.A., Santiago-Aviles, J. et al. Electronic structure and optical properties of SnO2:F from PBE0 hybrid functional calculations. J Mater Sci: Mater Electron 29, 15423–15435 (2018). https://doi.org/10.1007/s10854-018-9067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9067-3

Navigation