Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15423–15435 | Cite as

Electronic structure and optical properties of SnO2:F from PBE0 hybrid functional calculations

  • E. Ching-Prado
  • C. A. Samudio
  • J. Santiago-Aviles
  • S. Velumani
Article
  • 105 Downloads

Abstract

The structural, electronic band structure and optical properties of SnO2 and SnO2:F are investigated as a function of fluorine (F) concentration by first-principles calculation using PBE0 hybrid exchange–correlation functional. Various supercells were constructed and optimized corresponding to different F content. An increase in the lattice parameters is obtained with increasing F level. Two different Sn–F bond lengths behavior are observed, where one of them is more sensible to F concentration. Löwdin charge analysis, related to charge transfer of Sn(0), Sn (1), O(5) and F(5), is presented and discussed, including the contribution of empty orbits 5d and 4f from Sn atoms. SnO2:F materials display characteristics of the n-type semiconductor, occupied states contributed mostly from hybridized Sn 5s, Sn 5p, O 2s and O 2p states in the conduction band increase with an increase in F concentration. Density of states (DOS) diagram of SnO2:F shows a band gap-like behavior inside the conduction band. The F dependence of the direct band gap, optical band gap, band gap-like and Burstein–Moss shift are calculated and discussed. A high concentration of fluorine (around 16 at.%) shows a transformation from direct to an indirect band gap. The imaginary dielectric function presents intra-band transition around Fermi level corresponding to Drude´s electrons. Also, inter-band transitions from valence band to conduction band and from occupied conduction band to unoccupied conduction band are evident from the optical spectra.

Notes

Acknowledgements

This work was partially supported by Col-11-014 SENACyT Grants from Panama.

References

  1. 1.
    R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films thickness: the role of thickness. J. Semicond. 32(5), 053001–053001 (2011)CrossRefGoogle Scholar
  2. 2.
    E. Ching-Prado, A. Watson, H. Miranda, I. Abrego, Optical properties of multilayers TiO2/SnO2:F thin films. MRS Adv. 1(46), 3133 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, J.X. Tian, W. Zhang, Cai, The studies on the role of fluorine in SnO2:F films prepared by spray pyrolysis with SnCl4. J. Optoelectron. Adv. Mater. 13(1), 89 (2011)Google Scholar
  4. 4.
    Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by Magnetron Sputtering. Coatings 4, 732 (2014)CrossRefGoogle Scholar
  5. 5.
    J.M. Rodríguez, A. Watson, I. Abrego, J. Ardisson, C.A. Samudio, E. Ching-Prado, A water vapor sensor application of Sn1−xFexO2−δ fibres. Mater. Res. Soc. Symp. Proc. (2015).  https://doi.org/10.1557/opl.2015.788 Google Scholar
  6. 6.
    A.A. Yadava, E.U. Masumdar, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C. H. Bhosale, Electrical, structural and optical properties of SnO2:F thin films: effect of the substrate temperature. J. Alloy. Compd. 488, 350 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Agashe, S. Mahamuni, Competitive effects of film thickness and growth rate in spray pyrolytically deposited fluorine-doped tin dioxide films. Thin Solid Films 518, 4868 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Ganose, D.O. Scanlon, Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Mater. Chem. C 4, 1467 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  10. 10.
    J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J. Chem. Phys. 123, 062201 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Franchini, Hybrid functionals applied to perovskites. J. Phys. 26, 253202 (2014)Google Scholar
  12. 12.
    P. Barbarat, S.F. Matar, First-principles investigations of the electronic, optical and chemical bonding properties of SnO2. Comput. Mater. Sci. 10, 368 (1998)CrossRefGoogle Scholar
  13. 13.
    J. Xu, S. Huang, Z. Wang, First principle study on the electronic structure of fluorine-doped SnO2. Solid State Comm. 149, 527 (2009)CrossRefGoogle Scholar
  14. 14.
    D. Xing, P. Wang, C. Zhang, The electronic structures and optical properties in nitrogen-doped SnO2, in Proceedings of 4th Annual International Conference on Material Science and Engineering, vol. 0554 (2016)Google Scholar
  15. 15.
    P. Lu, Y. Shen, Z. Yu, L. Zhao, Q. Li, S. Ma, L. Han, Y. Liu, Electronic structure and optical properties of antimony-doped SnO2 from first-principle study. Commun. Theor. Phys. 57, 145 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Li, Y. Zhang, S. Cui, Y. Ding, J. Tang, R. Zhang, Electronic structure and optical properties of oxygen vacancy and Ag-doped SnO2 sensors. Chem. Eng. Trans. 51, 1285 (2016)Google Scholar
  17. 17.
    J. Robertson, Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C, 12, 4767 (1979)CrossRefGoogle Scholar
  18. 18.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J.Phys. 21, 395502 (2009)Google Scholar
  19. 19.
    J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982 (1996)CrossRefGoogle Scholar
  20. 20.
    Q. Fan, J. Yang, Y. Yu, J. Zhang, J. Cao, Electronic structure and optical properties of Al-doped ZnO. Chem. Eng. Trans. 46, 985 (2015)Google Scholar
  21. 21.
    Y. Jinliang, Q. Chong, Electronic structure and optical properties of F-doped β-Ga2O3 from first principles. J. Semicond. 37(4), 042001–042002 (2016)CrossRefGoogle Scholar
  22. 22.
    W.H. Baur, Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2 und MgF2. Acta Crystallogr. A 9(6), 515 (1956)CrossRefGoogle Scholar
  23. 23.
    Z.Y. Banyamin, P.J. Kell, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Tatar, B. Düzgün, The relationship between the doping levels and some physical properties of SnO2:F thin films spray-deposited on optical glass. Pramana 79(1), 137 (2012)CrossRefGoogle Scholar
  25. 25.
    W.Z. Samad, M.M. Salleh, A. Shafiee, M.A. Yarmo, Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malays. 40(3), 251 (2011)Google Scholar
  26. 26.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32, 751–767 (1976) (Database of ionic radii, http://abulafia.mt.ic.ac.uk/shannon/)
  27. 27.
    Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M. Park, L. Jiang, J.H. Kim, S. Dou, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Wu, S. Yuan, L. Shi, Y. Zhao, J. Fang, Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J. Colloid Interface Sci. 346, 12 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Leite, J.A. Cerri, E. Longo, J.A. Varela, Sintering of undoped SnO2, Ceramica 49, 87 (2003)CrossRefGoogle Scholar
  30. 30.
    J.M. Themlin, R. Sporken, J. Darville, R. Caudano, J.M. Gilles, R.L. Johnson, Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states. Phys. Rev. B 42, 11914 (1990)CrossRefGoogle Scholar
  31. 31.
    M. Weidner, Fermi level determination in tin oxide by photoelectron spectroscopy, Thesis, Technischen Universität Darmstadt, 2016Google Scholar
  32. 32.
    A. Marini, C. Hogan, M. Grüning, D. Varsano, Yambo: an ab initio tool for excited state calculations. Comput. Phys. Comm. 180, 1392 (2009)CrossRefGoogle Scholar
  33. 33.
    V.M. Yubero, A.R. Jimenez, Gonzalez-Elipe, Optical properties and electronic transitions of SnO2 thin films by reflection electron energy loss spectroscopy. Surf. Sci. 400, 116 (1998)CrossRefGoogle Scholar
  34. 34.
    P.D. Borges, L.M.R. Scolfaro, H.W.L. Alves, E.F. da Silva, DFT study of the electronic, vibrational, and optical properties of SnO2. Theor. Chem. Acc. 126, 39 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Natural Science Department, Faculty of Science and TechnologyTechnological University of PanamaPanama CityPanama
  2. 2.Geological DepartmentUniversity of Passo FundoPasso FundoBrazil
  3. 3.Faculty of Electrical EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Electrical EngineeringCINVESTAV-IPNMexico CityMexico

Personalised recommendations