Dielectric behavior of a lead-free electroceramics Ba1−xEr2x/3(Ti1−yZry)O3

  • F. Si-Ahmed
  • K. Taïbi
  • O. Bidault
  • N. Millot


Lead-free electroceramics samples of composition Ba1−xEr2x/3(Ti1−yZry)O3 (BETZ) with x = 0.01 and 0.02 and 0.20 ≤ y ≤ 0.35 have been elaborated by solid-state reaction technique. X-ray diffraction at room temperature discloses a single perovskite phase with a cubic symmetry. Dielectric measurements were carried out in the ranges (80–445 K) and (102–106 Hz) of temperature and frequencies respectively. The ceramics exhibited normal and/or relaxor ferroelectric properties then some of them have very interesting dielectric characteristics in the vicinity of room temperature. A wide dielectric anomaly combined to the dielectric maxima shift toward a higher temperature with increasing frequency denotes either a diffuse phase transition or relaxor behavior in some ceramics. For any erbium concentration, when titanium is substituted by zirconium, the temperature of the permittivity maximum TC (Tm) and the maximum permittivity (ε′rmax) decreases while ΔTm(f)= [Tm(106 Hz) − Tm(102 Hz)] and tan δ increase. The diffuse phase transition parameters were calculated from the modified Curie–Weiss law linear fit. Further a relaxor nature was confirmed and endorsed by a good fit to the Vogel–Fülcher relation.



The authors are grateful to N. Geoffroy for his help in XRD experiments and helpful discussion and to Dr. F. Herbst for SEM and EDX observations.


  1. 1.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Application (Chapman & Hall, New York, 1990), p. 464Google Scholar
  2. 2.
    G.H. Jonker, Some aspects of semiconducting barium titanate. Solid-State Electr. 7(12), 895–903 (1964)CrossRefGoogle Scholar
  3. 3.
    H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, T. Okuda, The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3. J. Eur. Ceram. Soc. 19(6), 1043–1046 (1999)CrossRefGoogle Scholar
  4. 4.
    Y. Tsur, T.D. Dunbar, C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7(1), 25–34 (2001)CrossRefGoogle Scholar
  5. 5.
    G.V. Lewis, C.R. Catlow, A. Computer modelling of barium titanate. Radia. Eff. 73(1–4), 307–314 (1983)CrossRefGoogle Scholar
  6. 6.
    G.V. Lewis, C.R.A. Catlow, Defect studies of doped and undoped barium titanate using computer simulation techniques. J. Phys. Chem. Sol. 47(1), 89–97 (1986)CrossRefGoogle Scholar
  7. 7.
    Y. Tsur, A. Hitomi, I. Scrymgeour, C.A. Randall, Site occupancy of rare-earth cations in BaTiO3. Jpn. J. Appl. Phys. 40(1R), 255–258 (2001)CrossRefGoogle Scholar
  8. 8.
    H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42(1R), 1–15 (2003)CrossRefGoogle Scholar
  9. 9.
    M.T. Buscaglia, M. Viviani, V. Buscaglia, C. Botino, Incorporation of Er3+ into BaTiO3. J. Amer. Ceram. Soc. 85(6), 1569–1575 (2002)CrossRefGoogle Scholar
  10. 10.
    S.E. Hao, L. Sun, J.X. Huang, Preparation and dielectric properties of Dy, Er-doped BaZr0.2 Ti0.8 O3 ceramics. Mater. Chem. Phys. 109(1), 45–49 (2008)CrossRefGoogle Scholar
  11. 11.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Improved piezoelectric property and bright upconversion luminescence in Er doped (Ba0.99 Ca0.01)(Ti0.98 Zr0.02)O3 ceramics. J. Alloy. Compd. 583, 305–308 (2014)CrossRefGoogle Scholar
  12. 12.
    D.A.I. Junli, D.U. Peng, X.U. Jiadan, X. Chaoxiang, L. Laihui, Piezoelectric and upconversion emission properties of Er3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic. J. Rare Earths 33(4), 391–396 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Si Ahmed, K. Taïbi, O. Bidault, N. Geoffroy, N. Millot, Normal and relaxor ferroelectric behavior in the Ba1−xPbx(Ti1 – yZry)O3 solid solutions. J. Alloy Compd. 693, 245–256 (2017)CrossRefGoogle Scholar
  14. 14.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)CrossRefGoogle Scholar
  15. 15.
    K. Kinoshita, A. Yamaji, Grain size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47(1), 371–373 (1976)CrossRefGoogle Scholar
  16. 16.
    G. Arlt, D. Hennings, G. With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58(4), 1619–1625 (1985)CrossRefGoogle Scholar
  17. 17.
    X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba (Zr0.2 Ti0.8) O3 ceramics. Solid State Commun. 131(3), 163–168 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Ravez, A. Simon, Temperature and frequency dielectric response of ferroelectric ceramics with composition Ba(Ti1 – xZrx)O3. Eur. J. Solid State Inorg. Chem. 34(11), 1199–1209 (1997)Google Scholar
  19. 19.
    S.C. Abrahams, S.K. Kurtz, P.B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 172(2), 551–553 (1968)CrossRefGoogle Scholar
  20. 20.
    R.J. Bratton, T.Y. Tien, Phase transitions in the system BaTiO3- KNbO3. J. Amer. Ceram. Soc. 50(2), 90–93 (1967)CrossRefGoogle Scholar
  21. 21.
    X.G. Tang, X.X. Wang, K.H. Chew, Chan H.L.W relaxor behavior of (Ba,Sr)(Zr,Ti)O3 ferroelectric ceramics. Solid State Commun. 136(2), 89–93 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)CrossRefGoogle Scholar
  23. 23.
    H. Vogel, The law of the relation between the viscosity of liquids and the temperature. Phys. Z. 22, 645–646 (1921)Google Scholar
  24. 24.
    G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8(6), 339–355 (1925)CrossRefGoogle Scholar
  25. 25.
    D. Viehland, M. Wuttig, L.E. Cross, The glassy behavior of relaxor ferroelectrics. Ferroelectrics 120(1), 71–77 (1991)CrossRefGoogle Scholar
  26. 26.
    T. Badapanda, S.K. Rout, S. Panigrahi, T.P. Sinha, S.I. Woo, Dielectric behavior of Yttrium doped Barium–zirconium–titanate ceramics. J. Korean Phys. Soc. 55, 749 (2009)CrossRefGoogle Scholar
  27. 27.
    C. Lauhlé, Structure locale dans un ferroélectrique relaxeur: BaTi(1–x) Zr(x)O3. Thèse de doctorat. (Institut National Polytechnique de Grenoble-INPG, France, 2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Cristallographie-Thermodynamique, Faculté de ChimieUniversité des Sciences et de la Technologie Houari BoumedieneAlgiersAlgeria
  2. 2.Laboratoire Interdisciplinaire Carnot de BourgogneUniversité Bourgogne Franche-Comté /UMR 6303 CNRSDijon CedexFrance

Personalised recommendations