Investigation of dielectric, mechanical, and electrical properties of flame synthesized Y2/3Cu2.90Zn0.10Ti4O12 material

  • Laxman Singh
  • Muhammad Sheeraz
  • Mahmudun Nabi Chowdhury
  • U. S. Rai
  • Shiva Sunder Yadava
  • Young Seok Park
  • Satya Vir Singh
  • Youngil Lee


A simple flame synthesis method was used to fabricate the Y2/3Cu2.90Zn0.10Ti4O12 (YCZTO) material. The X-ray diffraction analysis showed the single-phase formation of the YCZTO material directly sintered at 1050 °C for 15 h. Scanning electron microscopy showed well packed grains with high densification of morphology having the average grain size in range of 0.8–4 µm. X-ray photoelectron spectroscopy analysis showed that the Cu and Zn are in + 2 valence state confirming the Zn successfully incorporated at Cu2+ site. YCZTO exhibited the εr value of ∼ 1.4 × 103 and dielectric loss (tan δ) of ∼ 0.09 at 50 °C. The impedance spectroscopy analysis suggested that the obtained YCZTO material is electrically heterogeneous. The activation energies (Ea) for conduction at the grain boundaries at higher temperature range (110–150 °C) were found to be in the range ∼ 1.0 eV. Besides the dielectric property, YCZTO also showed the interesting mechanical and I–V characteristics.



This work was supported by the National Research Foundation (NRF-2015R1D1A3A01019167 for Y. Lee and NRF-2015R1D1A4A01019630 for L. Singh) and Priority Research Centers Program (NRF-2009-0093818) funded by the Ministry of Education in the Republic of Korea.


  1. 1.
    X. Zhang, J. Zhang, Y. Zhou, Z. Xie, Z. Yue, L. Li, Highly accelerated resistance degradation and thermally stimulated relaxation in BaTiO3-based multilayer ceramic capacitors with Y5V specification. J. Alloys Compd. 662, 308–314 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Long, X. Liu, X. Long, Z. Yi, Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 ceramics and their multilayer piezoelectric actuators. J. Alloys Compd. 706, 234–243 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Li, K. Wu, R. Jia, L. Hou, L. Gao, S. Li, Towards enhanced varistor property and lower dielectric loss of CaCu3Ti4O12 based ceramics. Mater. Des. 92, 546–551 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Singh, U.S. Rai, K.D. Mandal, Dielectric properties of zinc doped nanocrystalline calcium copper titanate synthesized by different approach. Mater. Res. Bull. 48, 2117–2122 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Singh, I.W. Kim, B.C. Sin, S.K. Woo, S.H. Hyun, K.D. Mandal, Y. Lee, Combustion synthesis of nano-crystalline Bi2/3 Cu3Ti2.90Fe0.10O12 using inexpensive TiO2 raw material and its dielectric characterization. Powder Tech. 280, 256–265 (2015)CrossRefGoogle Scholar
  6. 6.
    Z. Liu, Z. Yang, X. Chao, Structure, dielectric property and impedance spectroscopy of La2/3Cu3Ti4O12 ceramics by sol–gel method. J. Mater. Sci. 27, 8980–8990 (2016)Google Scholar
  7. 7.
    L. Singh, U.P. Azad, S.P. Singh, V. Ganesan, U.S. Rai, Y. Lee, Yttrium copper titanate as a highly efficient electrocatalyst for oxygen reduction reaction in fuel cells, synthesized via ultrafast automatic flame technique. Sci. Rep. 7, 9407–9410 (2017)CrossRefGoogle Scholar
  8. 8.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A.Loidl, Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl. Phys. Lett. 91, 022910–022913 (2007)CrossRefGoogle Scholar
  10. 10.
    L. Singh, I.W. Kim, W.S. Woo, B.C. Sin, H. Lee, Y. Lee, A novel low cost non-aqueous chemical route for giant dielectric constant CaCu3Ti4O12 ceramic. Solid State Sci. 43, 35–45 (2015)CrossRefGoogle Scholar
  11. 11.
    B.A. Bender, M.J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117, 339–347 (2005)CrossRefGoogle Scholar
  12. 12.
    U.S. Rai, L. Singh, K.D. Mandal, N.B. Singh, An overview on recent developments in the synthesis, characterization and properties of high dielectric constant calcium copper titanate nano-particles. Nanosci. Technol. 2, 1–17 (2014)Google Scholar
  13. 13.
    L. Liu, H. Fan, P. Fang, L. Jin, Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol–gel method. Solid State Comm. 142, 573–576 (2007)CrossRefGoogle Scholar
  14. 14.
    B. Shri Prakash, K.B.R. Varma, The influence of the segregation of Cu-rich phase on the microstructural and impedance characteristics of CaCu3Ti4O12 ceramics. J. Mater. Sci. 42, 7467–7477 (2007)CrossRefGoogle Scholar
  15. 15.
    L. Ni, X.M. Chen, Enhancement of giant dielectric response in CaCu3Ti4O12 ceramics by Zn substitution. J. Am. Ceram. Soc. 93, 184–189 (2010)CrossRefGoogle Scholar
  16. 16.
    S.D. Hutagalung, L.Y. Ooi, Z.A. Ahmad, Improvement in dielectric properties of Zn-doped CaCu3Ti4O12 electroceramics prepared by modified mechanical alloying technique. J. Alloy. Compd. 476, 477–481 (2009)CrossRefGoogle Scholar
  17. 17.
    L. Singh, U.S. Rai, K.D. Mandal, Influence of Zn doping on microstructures and dielectric properties in CaCu3Ti4O12 ceramic synthesised by semiwet route. Adv. Appl. Ceram. 111, 374–380 (2012)CrossRefGoogle Scholar
  18. 18.
    W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. Technol. 26, 682–686 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Singh, U.S. Rai, K.D. Mandal, Dielectric, modulus and impedance spectroscopic studies of nanostructured CaCu2.70Mg0.30Ti4O 12 electro-ceramic synthesized by modified sol–gel route. J. Alloy. Compd. 555, 176–183 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics. RSC Adv. 6, 55984–55989 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Kafi, A. Kompany, H. Arabi, A.K. Zak, The effect of cobalt-doping on microstructure and dielectric properties of CaCu3Ti4O12 ceramics. J. Alloy. Compd. 727, 168–176 (2017)CrossRefGoogle Scholar
  22. 22.
    P. Liang, Z. Yang, X. Chao, Z. Liu, Giant dielectric constant and good temperature stability in Y2/3Cu3Ti4O12 ceramics. J. Am. Ceram. Soc. 95, 2218–2225 (2012)CrossRefGoogle Scholar
  23. 23.
    P. Liang, F. Li, X. Chao, Z. Yang, Effects of Cu stoichiometry on the microstructure, electrical conduction, and dielectric responses of Y2/3Cu3Ti4O12, Ceram. Int. 41, 11314–11322 (2015)CrossRefGoogle Scholar
  24. 24.
    V. Rajendar, B. Rajitha, K.V. Rao, Novel sol–gel method for synthesis of Bi2/3Cu3Ti4O12 (BCTO) and its light harvesting applications. J. Mater. Sci. 26, 9661–9666 (2015)Google Scholar
  25. 25.
    Z. Liu, X. Chao, P. Liang, Z. Yang, L. Zhi, Differentiated electric behaviors of La2/3Cu3Ti4O12 ceramics prepared by different methods. J. Am. Ceram. Soc. 97, 2154–2163 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Sharma, M.M. Singh, K.D. Mandal, Microstructure and magnetic properties of Y2/3Cu3Ti4O12 ceramic. New J. Chem. 41, 10383–10389 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Jesurani, S. Kanagesan, R. Velmurugan, C. Kumar, T. Kalaivani, Sol–gel combustion synthesis of giant dielectric CaCu3Ti4O12 nano powder. J. Manuf. Eng. 5, 124–128 (2010)Google Scholar
  28. 28.
    J. Li, P. Liang, J. Yi, X. Chao, Z. Yang, Phase formation and enhanced dielectric response of Y2/3Cu3Ti4O12 ceramics derived from the sol–gel process. J. Am. Ceram. Soc. 98, 795–803 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Sharma, K.D. Mandal, Effect of zinc doping at Cu2+- site in Y2/3Cu3Ti4O12 ceramic synthesized by semi-wet route. Trans. Power Metall. Assoc. India 41, 82–87 (2015)Google Scholar
  30. 30.
    Y. Wu, Q. Zhang, X. Yin, H. Cheng, Template-free synthesis of mesoporous anatase yttrium-doped TiO2 nanosheet-array films from waste tricolor fluorescent powder with high photocatalytic activity. RSC Adv. 3, 9670–9676 (2013)CrossRefGoogle Scholar
  31. 31.
    P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 112, 114115 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Zhang, X. Li, Q. Zhao, S. Liu, Synthesis and optical property of one dimensional spinel ZnMn2O4 nanorods. Nanoscale Res. Lett. 6, 323–328 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Watanabe, X. Ma, C. Song, Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J. Phys. Chem. C 113, 14249–14257 (2009)CrossRefGoogle Scholar
  34. 34.
    A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, Effect of vanadium doping on the dielectric and nonlinear current–voltage characteristics of CaCu3Ti4O12 ceramic. J. Alloy. Compd. 506, 853–857 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Ganaie, S. Ahmad, S.I.M. Zulfequar, Electrical conductivity and dielectric properties of Se100–xTex alloy. Int. J. Phys. Astron. 2, 51–64 (2014)Google Scholar
  36. 36.
    M.B. Hossen, A.K.M. Akther Hossain, Frequency and temperature dependent transport properties of NiCuZn ceramic oxide. Mater. Sci.-Pol. 33, 259–267 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Li, P. Liang, J. Yi, X. Chao, Z. Yang, Phase formation and enhanced dielectric response of Y2/3Cu3Ti4O12 ceramics derived from the sol–gel process. J. Am. Ceram. Soc. 98, 1–9 (2014)Google Scholar
  38. 38.
    S. Sharma, S.S. Yadav, M.M. Singh, K.D. Mandal, Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic. J. Adv. Dielect. 4, 1450030–1450038 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Yang, X. Chao, Z. Yang, N. Zhao, L. Wei, Z. Yang, Dielectric constant versus voltage and non-Ohmic characteristics of Bi2/3Cu3Ti4O12 ceramics prepared by different methods. Ceram. Int. 42, 2526–2533 (2016)CrossRefGoogle Scholar
  40. 40.
    Z. Xu, H. Qiang, Enhanced dielectric properties of Zn and Mn co-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. 28, 376–380 (2017)Google Scholar
  41. 41.
    F. Han, S. Ren, J. Deng, T. Yan, X. Ma, B. Peng, L. Liu, Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J. Mater. Sci. 28, 17378–17387 (2017)Google Scholar
  42. 42.
    C. Mu, H. Zhang, Y. He, J. Shen, P. Liu, Influence of dc bias on the dielectric relaxation in Fe-substituted CaCu3Ti4O12 ceramics: grain boundary and surface effects. J. Phys. D 42, 175410–175416 (2009)CrossRefGoogle Scholar
  43. 43.
    H. Wang, S. Li, J. He, C. Lin, Dielectric properties of CaCu3Ti4O12 ceramics: effect of high purity nanometric powders. J. Mater. Sci. 25, 1842–1847 (2014)Google Scholar
  44. 44.
    L. Liu, D. Shi, S. Zheng, Y. Huang, S.S. Wu, Y. Li, L. Fang, C. Hu, Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys. 139, 844–850 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Very high-performance dielectric properties of Ca1–3x/2YbxCu3Ti4O12 ceramics. J. Alloy. Compd. 612, 103–109 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3. Appl. Phys. A 114, 891–896 (2014)CrossRefGoogle Scholar
  47. 47.
    X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics. Appl. Phys. A 122, 864–871 (2016)CrossRefGoogle Scholar
  48. 48.
    W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 123, 15–23 (2017)CrossRefGoogle Scholar
  49. 49.
    G. Ruhl, W. Lehnert, M. Lukosius, C. Wenger, C.B. Kaynak, T. Blomberg, S. Haukka, P.K. Baumann, W. Besling, A. Roest, B. Riou, S. Lhostis, A. Halimaou, F. Roozeboom, E. Langereis, W.M.M. Kessels, A. Zauner, S. Rushworth, Dielectric material options for integrated capacitors. ECS J. Solid State Sci. Technol. 3, N120-N125 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Laxman Singh
    • 1
    • 2
  • Muhammad Sheeraz
    • 3
  • Mahmudun Nabi Chowdhury
    • 4
  • U. S. Rai
    • 5
  • Shiva Sunder Yadava
    • 1
  • Young Seok Park
    • 6
  • Satya Vir Singh
    • 7
  • Youngil Lee
    • 1
  1. 1.Department of ChemistryUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of ChemistryR.R.S. CollegePatnaIndia
  3. 3.Department of Physics and Energy Harvest Storage Research CenterUniversity of UlsanUlsanRepublic of Korea
  4. 4.School of Mechanical EngineeringUniversity of UlsanUlsanRepublic of Korea
  5. 5.Department of ChemistryInstitute of Science (BHU)VaranasiIndia
  6. 6.School of Materials Science and EngineeringUniversity of UlsanUlsanRepublic of Korea
  7. 7.Department of Chemical Engineering and TechnologyIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations