Influence of Fe–B addition on electromagnetic wave absorption properties of RGO composite

Article
  • 19 Downloads

Abstract

The Fe–B amorphous nano-particle with reduced graphene oxide (FeB@RGO) has been successfully prepared as a novel absorbing material of light-weight broadband electromagnetic wave (EW). This paper studied the influence of the thickness of the sample and the paraffin amount on absorption properties of the composite to EW. According to the research results, the absorption peak occurred in a low frequency region as the thickness increased, and only 5 wt% FeB@RGO added to the paraffin 2.2 mm thick has the optimal EW absorption property. Compared to Fe–B particles and RGO, the FeB@RGO as EW absorbing materials have better absorbing properties with higher reflectivity (− 49.13 dB), wider bandwidth (6.64 GHz) and smaller addition concentration (5 wt%), which is more suitable as an efficient and light-weight EW absorber.

Notes

Acknowledgements

The authors express gratitude to the support received from China Aerospace Science and Technology Innovation Fund.

References

  1. 1.
    C.C. Wang, Y. Jiao, T.G. Qiang, J. Li, Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding. Carbohydr. Polym. 156, 427–434 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77, 756–774 (2014)CrossRefGoogle Scholar
  3. 3.
    R.W. Shu, H.L. Xing, X.L. Ji, D.X. Tan, Y. Gan, Preparation, microwave absorption and infrared emissivity of Ni-doped ZnO/Al powders by coprecipitation method in the GHz range. Nano 11(4), 1650047 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Kong, X.W. Yin, X.Y. Yuan, Y.J. Zhang, X.M. Liu, L.F. Cheng, L.T. Zhang, Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185–193 (2014)CrossRefGoogle Scholar
  5. 5.
    S.C. Chiu, H.C. Yu, Y.Y. Li, High electromagnetic wave absorption performance of silicon carbide nanowires in the GHz range. J. Phys. Chem. C 114(4), 1947–1952 (2010)CrossRefGoogle Scholar
  6. 6.
    G. Li, T.S. Xie, S.L. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116(16), 9196–9201 (2012)CrossRefGoogle Scholar
  7. 7.
    Y.B. Li, R. Yi, A.G. Yan, L.W. Deng, K.C. Zhou, X.H. Liu, Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles. Solid State Sci. 11(8), 1319–1324 (2009)CrossRefGoogle Scholar
  8. 8.
    W.Y. Fu, S.K. Liu, W.H. Fan, H.B. Yang, X.F. Pang, J. Xu, G.T. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property. J. Magn. Magn. Mater. 316(1), 54–58 (2007)CrossRefGoogle Scholar
  9. 9.
    X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du, P. Xu, Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 115(25), 12350–12357 (2011)CrossRefGoogle Scholar
  10. 10.
    S.S. Kim, S.T. Kim, J.M. Ahn, K.H. Kim, Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. Magn. Mater. 271(1), 39–45 (2004)CrossRefGoogle Scholar
  11. 11.
    Y.N. Jiang, Y. Wang, D.B. Ge, S.M. Li, W.P. Cao, X. Gao, X.H. Yu, An ultra-wideband absorber based on graphene. Acta Phys. Sin. 65(5), 054101 (2016)Google Scholar
  12. 12.
    W. Li, T.L. Wu, W. Wang, J.G. Guan, P.C. Zhai, Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers. Appl. Phys. Lett. 104(2), 022903 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Liu, Y. Huang, X. Sun, Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 5(23), 12355–12360 (2013)CrossRefGoogle Scholar
  14. 14.
    X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)CrossRefGoogle Scholar
  15. 15.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  16. 16.
    Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)CrossRefGoogle Scholar
  17. 17.
    S.Y. Huang, B. Zhao, K. Zhang, M.M.F. Yuen, J.B. Xu, X.Z. Fu, R. Sun, C.P. Wong, Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity. Sci. Rep. 5, 14260 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Wu, A.M. Xie, M.X. Sun, Y. Wang, M.Y. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3(27), 14358–14369 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, H.T. Guan, C.J. Dong, X.C. Xiao, S.F. Du, Y.D. Wang, Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42(1A), 936–942 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Ding, L. Zhang, Q.L. Liao, G.J. Zhang, S. Liu, Y. Zhang, Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9(7), 2018–2025 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Ding, Z. Zhang, B.H. Luo, Q.L. Liao, S. Liu, Y.C. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 10(3), 980–990 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Ding, Q.L. Liao, S. Liu, H.J. Guo, Y.H. Sun, G.J. Zhang, Y. Zhang, Reduced graphene oxide functionalized with cobalt ferrite nanocomposites for enhanced efficient and lightweight electromagnetic wave absorption. Sci. Rep. 6, 32381 (2016)CrossRefGoogle Scholar
  23. 23.
    G.Y. Lee, S.K. Kwon, J.S. Lee, Annealing effect on microstructure and magnetic properties of flake-shaped agglomerates of Ni-20 wt%Fe nanopowder. J. Alloys Compd. 613, 164–169 (2014)CrossRefGoogle Scholar
  24. 24.
    P.P. Yang, Y. Liu, X.C. Zhao, J.W. Cheng, H. Li, Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31(16), 2398–2406 (2016)CrossRefGoogle Scholar
  25. 25.
    P.P. Yang, Y. Liu, X.C. Zhao, J.W. Cheng, H. Li, Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27(4), 1128–1133 (2016)CrossRefGoogle Scholar
  26. 26.
    S.L. Guo, L.D. Wang, H.J. Wu, Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe-Ni alloy/ordered mesoporous carbon composite. Adv. Powder Technol. 26(4), 1250–1255 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Xiang, J.L. Li, X.H. Zhang, Q. Ye, J.H. Xu, X.Q. Shen, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Res. A 2(40), 16905–16914 (2014)Google Scholar
  28. 28.
    X. Zhong, J.W. Cheng, Y. Liu, X.C. Zhao, Effect of annealing temperature on structure, magnetic and microwave absorption properties of Fe–B submicrometer particles. J. Mater. Res. 31(22), 3619–3628 (2016)CrossRefGoogle Scholar
  29. 29.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Almant, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano. 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Composites B. 136, 135–1429 (2018)CrossRefGoogle Scholar
  31. 31.
    J. Li et al., Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129, 76–84 (2018)CrossRefGoogle Scholar
  32. 32.
    D.F. Liang, M.G. Han, B. Yan, L.J. Deng, Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires. Chin Phys. 16(2), 542–547 (2007)CrossRefGoogle Scholar
  33. 33.
    R.L. Ji, C.B. Cao, Z. Chen, H.Z. Zhai, J. Bai, Solvothermal synthesis of CoxFe3–xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2(29), 5944–5953 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Lu, H. Huang, X.L. Dong, X.F. Zhang, J.P. Lei, J.P. Sun, C. Dong, Influence of alloy components on electromagnetic characteristics of core/shell-type Fe–Ni nanoparticles. J. Appl. Phys. 104(11), 114313 (2008)CrossRefGoogle Scholar
  35. 35.
    H.J. Wu, L.D. Wang, Y.M. Wang, S.L. Guo, H. Wu, Flower-like alpha-Fe2O3/ordered mesoporous carbon nanocomposite and its enhanced microwave absorption property. Mater. Res. Innov. 18(4), 273–279 (2014)CrossRefGoogle Scholar
  36. 36.
    X.A. Li, M.J. Li, H.Y. Wang, One-pot synthesis of FeCo alloy and iron borate composite nanorods with excellent electromagnetic wave absorption properties. RSC Adv. 6(111), 109346–109353 (2016)CrossRefGoogle Scholar
  37. 37.
    M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403–16409 (2014)CrossRefGoogle Scholar
  38. 38.
    P.B. Liu, Y. Huang, L. Wang, M. Zong, W. Zhang, Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Mater. Lett. 107, 166–169 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Zong, Y. Huang, H.W. Wu, Y. Zhao, Q.F. Wang, X. Sun, One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52–55 (2014)CrossRefGoogle Scholar
  40. 40.
    T. Chen, J.H. Qiu, K.J. Zhu, Y.C. Che, Y. Zhang, J.M. Zhang, H. Lim, F. Wang, Z.Z. Wang, Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Sci. Mater. Electron. 25(9), 3664–3673 (2014)CrossRefGoogle Scholar
  41. 41.
    Y.N. Li, T. Wu, K.T. Jin, Y. Qian, N.X. Qian, K.D. Jiang, W.H. Wu, G.X. Tong, Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods. Appl. Surf. Sci. 387, 190–201 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Feng, Y.M. Wang, J.C. Chen, L. Wang, L.X. Guo, J.H. Ouyang, D.C. Jia, Y. Zhou, Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016)CrossRefGoogle Scholar
  43. 43.
    P.B. Liu, Y. Huang, J. Yan, Y.W. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8(8), 5536–5546 (2016)CrossRefGoogle Scholar
  44. 44.
    H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu, C.L. Zhu, Y.J. Chen, X.Y. Xue, C.W. Sun, M.S. Cao, Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679 (2012)CrossRefGoogle Scholar
  45. 45.
    M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guosheng Wen
    • 1
  • Xiuchen Zhao
    • 1
  • Ying Liu
    • 1
  • Jingfang Ma
    • 1
  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations