A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er2O3

  • Yasser B. Saddeek
  • A. A. El-Maaref
  • M. G. Moustafa
  • M. M. El-Okr
  • A. A. Showahy


In this study, the radiative parameters were acquired from the UV absorption spectra and the luminescence spectra of Er3+ ions doped Er2O3–Al2O3–Na2O–P2O5 glasses. The intensity of each absorption spectrum was utilized to deduce the radiative parameters and the parameters (Ω2, Ω4 and Ω6) of Judd–Ofelt theory. The FTIR and the elastic moduli of the quaternary glasses are also investigated. Analysis of the FTIR suggested that the presence of Er3+ ions created bridging oxygens and polymerized the local structure around atoms. This procedure manifested itself from decreasing the bond length of O–P and increasing the O/P ratio. The polymerization of the phosphate structure increased the ultrasonic velocity and the rigidity of the network. The electrical parameters of the phosphate glasses, such as the frequency and temperature dependence AC conductivity, dielectric loss and dielectric modulus were carried out. The Er3+ ions affected the carrier mobility by decreasing the electrical conductivity and increasing the activation energy. In addition, the frequency and temperature dependence of the dielectric modulus exhibited a Debye-type relaxation behavior.


  1. 1.
    N. Effendy, Z.A. Wahab, H.M. Kamari, K.A. Matori, S.H. Ab Aziz, M.H. Zaid, Structural and optical properties of Er3+-doped willemiteglass-ceramics from waste materials. Optik 127, 11698–11705 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Miguel, R. Morea, M.A. Arriandiaga, M. Hernandez, F. Ferrer, C. Domingo, J. Fernandez-Navarro, J. Gonzalo, J. Fernandez, R. Balda, Structural, optical and spectroscopic properties of Er3+-doped TeO2-ZnO-ZnF2 glass-ceramics. J. Eur. Ceram. Soc. 34, 3959–3968 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Azlan, M.K. Halimah, H. Sidek, Linear and nonlinear optical properties of erbium doped zinc borotellurite glass system. J. Lumin. 181, 400–406 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Chen, R. He, Y. Tan, B. Wang, S. Akhmadaliev, S. Zhou, J. Vázquez de Aldana, L. Hu, F. Chen, Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions. Opt. Mater. 51, 185–189 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A.K. Dharmadhikari, J.A. Dharmadhikari, D. Mathur, Femtosecond laser written channel waveguides in tellurite glass. Opt. Express 14, 12145–12150 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Miguel, R. Morea, J. Gonzalo, M.A. Arriandiaga, J. Fernandez, R. Balda, Near-infrared emission and upconversion in Er3+-doped TeO2–ZnO–ZnF2 glasses. J. Lumin. 140, 38–44 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.C. Ratnakaram, N.V. Srihari, A.Vijaya Kumar, D. Thirupathi Naidu, R.P.S. Chakradhar, Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations. Spectrochim. Acta A 72, 171–177 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Zhang, Z. Bi, A. Huang, Z. Xiao, Luminescence and Judd–Ofelt analysis of the Pr3+ doped fluorotellurite glass. J. Lumin. 160, 85 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Kesavulu, Ch Basavapoornima, C. Dwaraka Viswanath, C.K. Jayasankar, Structural and NIR to visible upconversion properties of Er3+-doped LaPO4 phosphors. J. Lumin. 171, 51–57 (2016)CrossRefGoogle Scholar
  10. 10.
    N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, Effects of Al3+, W6+, Nb5+ and Pb2+ on the structure and properties of borotellurite glasses. J. Non-Cryst. Solids 429, 153 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Saddeek, Network structure of molybdenum lead phosphate glasses: infrared spectra and constants of elasticity. Phys. B 406, 562–566 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Saddeek, A. El-Maaref, K. Aly, M. ElOkr, A. Showahy, Investigations on spectroscopic and elasticity studies of Nd2O3 doped CANP phosphate glasses. J. Alloys Compd. 694, 325–332 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Denker, B. Galagan, V. Kamynin, A. Kurkov, Y. Sadovnikova, S. Semenov, S. Sverchkov, V. Velmiskin, E. Dianov, Composite laser fiber with Yb, Er co-doped phosphate glass core and silica cladding. Laser Phys. Lett. 10, 055109 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Brahmachary, D. Rajesh, S. Babu, Y.C. Ratnakaram, Investigations on spectroscopic properties of Pr3+ and Nd3+ doped zinc-alumino-sodium-phosphate (ZANP) glasses. J. Mol. Struct. 1064, 6–14 (2014)CrossRefGoogle Scholar
  15. 15.
    D.M. Wu, A. García-Etxarri, A. Salleo, J.A. Dionne, Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Lin, S. Jiang, J. Wu, F. Song, N. Peyghambarian, E.Y.B. Pun, Er3+ doped Na2O–Nb2O5–TeO2 glasses for optical waveguide laser and amplifier. J. Phys. D 36, 812–817 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Venkata Krishnaiah, J. Marques-Hueso, K. Suresh, G. Venkataiah, B.S. Richards, C.K. Jayasankar, Spectroscopy and near infrared upconversion of Er3+-doped TZNT glasses. J. Lumin. 169, 270–276 (2016)CrossRefGoogle Scholar
  18. 18.
    A.F. Obaton, C. Labbe´, P. Le Boulanger, B. Elouadi, G. Boulon, Excited state absorption in Yb3+-Er3+-codoped phosphate glasses (ZnO–Al2O3–La2O3–P2O5) around the 4I13/24I15/2 emission spectral range. Spectrochim. Acta A 55, 263–271 (1999)CrossRefGoogle Scholar
  19. 19.
    G.S. Ofelt, Intensities of crystal spectra of rare earth ions. J. Chem. Phys. 37, 511 (1962)CrossRefGoogle Scholar
  20. 20.
    B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
  21. 21.
    B.M. Walsh, in Judd-Ofelt Theory: Principles and Practices, ed. by B. Di Bartolo, O. Forte. Advances in Spectroscopy for Lasers and Sensing, (Springer, Dordrecht, 2006), pp. 403–433CrossRefGoogle Scholar
  22. 22.
    J. Jiménez, Temperature dependence of Cu+ luminescence in barium-phosphate glasses: effect of rare-earth ions (Sm3+, Nd3+) and correlation with glass structure. J. Non-Cryst. Solids 432, 227–231 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Kubliha, V. Trnovcova, V. Labas, J. Psota, J. Pedlikova, J. Podolinciakova, Electrical and dielectric properties of doped TeO2·PbCl2·PbF2 glasses, prepared in Au or Pt crucibles. J. Optoelectron. Adv. Mater. 13, 1493–1497 (2011)Google Scholar
  24. 24.
    H. Liu, Y. Lu, Y. Qu, H. Lu, Y. Yue, Effect of the content of Al2O3 on structure and properties of calcium-phosphate glasses: two experimental case studies. J. Non-Cryst. Solids 450, 95–102 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Saddeek, M.A. Kaid, M.R. Ebeid, FTIR and physical features of Al2O3–La2O3–P2O5–PbO glasses. J. Non-Cryst. Solids 387, 30–35 (2014)CrossRefGoogle Scholar
  26. 26.
    N. Vedeanu, D.A. Magdas, R. Stefan, Structural modifications induced by addition of copper oxide to lead–phosphate glasses. J. Non-Cryst. Solids 358, 3170–3174 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Sendova, J. Jiménez, C. Honaman, Rare earth-dependent trend of the glass transition activation energy of doped phosphate glasses: calorimetric analysis. J. Non-Cryst. Solids 450, 18–22 (2016)CrossRefGoogle Scholar
  28. 28.
    I. Soltani, S. Hraiech, K. Horchani-Naifer, J. Massera, L. Petit, M. Férid, Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticles. J. Non-Cryst. Solids 438, 67–73 (2016)CrossRefGoogle Scholar
  29. 29.
    V. Sudarsan, R. Mishra, S.K. Kulshreshtha, Thermal and structural studies on TeO2 substituted (PbO)0.5(P2O5)0.5 glasses. J. Non-Cryst. Solids 342, 160–165 (2004)CrossRefGoogle Scholar
  30. 30.
    R. Marzke, S. Boucher, G. Wolf, J. Piwowarczyk, W. Petuskey, Lanthanum phosphate calcium aluminate glasses: 27Al and 31P NMR spectroscopy. J. Eur. Ceram. Soc. 28, 2421–2431 (2008)CrossRefGoogle Scholar
  31. 31.
    T. Satyanarayana, T. Kalpana, V. Ravi Kumar, N. Veeraiah, Role of Al coordination in barium phosphate glasses on the emission features of Ho3+ ion in the visible and IR spectral ranges. J. Lumin. 130, 498–506 (2010)CrossRefGoogle Scholar
  32. 32.
    E.E. Metwalli, R.K. Brow, F.S. Stover, Cation effects on anion distributions in aluminophosphate glasses. J. Am. Ceram. Soc. 84, 1025–1032 (2001)CrossRefGoogle Scholar
  33. 33.
    A.M. Abdelghany, Modeling, structural, and spectroscopic studies of cobalt-doped lithium phosphate glasses and effect of gamma irradiation. Spectrosc. Lett. 48, 623–630 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Bourhis, J. Massera, L. Petit, J. Koponen, A. Fargues, T. Cardinal, L. Hupa, M. Hupa, M. Dussauze, V. Rodriguez, M. Ferraris, Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: influence of the silica content on the structure and thermal, physical, optical and luminescence properties. Mater. Res. Bull. 70, 47–54 (2015)CrossRefGoogle Scholar
  35. 35.
    A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72–77 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Rajanikanth, Y. Gandhi, N. Veeraiah, Enrichment of orange emission of Er3+ ion with Sn4+ ion as sensitizer in lithium lead phosphate glass system. Opt. Mater. 48, 51–58 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Venkateswara Rao, N. Vijaya, A.S. Joshi, H.D. Shashikala, C.K. Jayasankar, Mechanical properties of Nd3+-doped phosphate laser glasses. Phys. Chem. Glasses 56, 81–84 (2015)Google Scholar
  38. 38.
    K.A. Matori, M.H.M. Zaid, S.H.A. Aziz, H.M. Kamari, Z.A. Wahab, Study of the elastic properties of (PbO)x(P2O5)1−x lead phosphate glass using an ultrasonic technique. J. Non-Cryst. Solids 361, 78–81 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Eraiah, M.G. Smitha, R.V. Anavekar, Elastic properties of lead-phosphate glasses doped with samarium trioxide. J. Phys. Chem. Solids 71, 153–155 (2010)CrossRefGoogle Scholar
  40. 40.
    D. Souri, F. Honarvar, Z.E. Tahan, Characterization of semiconducting mixed electronic-ionic TeO2-V2O5-Ag2O glasses by employing ultrasonic measurements and Vicker’s microhardness. J. Alloys Compd. 699, 601–610 (2017)CrossRefGoogle Scholar
  41. 41.
    D. Souri, Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses. J. Non-Cryst. Solids 470, 112–121 (2017)CrossRefGoogle Scholar
  42. 42.
    D. Souri, M. Mohammadi, H. Zaliani, Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses. Electron. Mater. Lett. 10, 1103–1108 (2014)CrossRefGoogle Scholar
  43. 43.
    G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Song, S. Ye, A. Lira, I.V. Kityk, M.A. Mahdi, Concentration dependent structural, thermal, and optical features of Pr3‏-doped multicomponent tellurite glasses. J. Alloys Compd. 686, 769–784 (2016)CrossRefGoogle Scholar
  44. 44.
    A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwad, Y.B. Saddeek, Optical characterizations and Judd–Ofelt analysis of Dy3+ doped borosilicate glasses. Opt. Mater. 72, 169–176 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Amin, B. Dussardier, T. Schweizer, M. Hempstead, Spectroscopic analysis of Er3+ transitions in lithium niobate. J. Lumin. 69, 17–26 (1996)CrossRefGoogle Scholar
  46. 46.
    K.V. Raju, C.N. Raju, S. Sailaja, B.S. Reddy, Judd–Ofelt analysis and photoluminescence properties of RE3+ (RE = Er & Nd): cadmium lithium boro tellurite glasses. Solid State Sci. 15, 102–109 (2013)CrossRefGoogle Scholar
  47. 47.
    J.M. de Mendívil, G. Lifante, M.C. Pujol, M. Aguiló, F. Díaz, E. Cantelar, Judd–Ofelt analysis and transition probabilities of Er3+ doped KY1–x–yGdxLuy(WO4)2 crystals. J. Lumin. 165, 153–158 (2015)CrossRefGoogle Scholar
  48. 48.
    G. Bilir, G. Ozen, D. Tatar, M.L. Öveçoğlu, Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO. Opt. Commun. 284, 863–868 (2011)CrossRefGoogle Scholar
  49. 49.
    E. Yousef, Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. J. Alloys Compd. 561, 234–240 (2013)CrossRefGoogle Scholar
  50. 50.
    Y. Fang, L. Hu, L. Wen, M. Liao, Judd–Ofelt intensity parameters of Er3+ doped mixed alkali aluminophosphate glasses. J. Alloys Compd. 431, 246–249 (2007)CrossRefGoogle Scholar
  51. 51.
    A. Okasha, A.M. Abdelghany, S. Marzouk‏, Judd–Ofelt analysis of spectroscopic properties of Sm3+ doped P2O5–SrO glasses. J. Mater. Sci.-Mater. Electron. 28, 12132–12138 (2017)CrossRefGoogle Scholar
  52. 52.
    P. Loiko, E. Vilejshikova, N. Khaidukov, M. Brekhovskikh, X. Mateos, M. Aguiló, K. Yumashev, Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals. J. Lumin. 180, 103–110 (2016)CrossRefGoogle Scholar
  53. 53.
    M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2-TiO2-Li2B4O7 glass system. J. Alloys Compd. 710, 312–322 (2017)CrossRefGoogle Scholar
  54. 54.
    D. Lu, G. Chen, J. Pei, X. Yang, H. Xian, Effect of erbium substitution on thermoelectric properties of complex oxide Ca3Co2O6 at high temperatures. J. Rare Earths 26, 168–172 (2008)CrossRefGoogle Scholar
  55. 55.
    A. Mogus-Milankovic, V. Licina, S.T. Reis, D.E. Day, Electronic relaxation in zinc iron phosphate glasses. J. Non-Cryst. Solids 353, 2659–2666 (2007)CrossRefGoogle Scholar
  56. 56.
    S. Duhan, S. Sanghi, A. Agarwal, A. Sheoran, S. Rani, Dielectric properties and conductivity enhancement on heat treatment of bismuth silicate glasses containing TiO2. Phys. B 404, 1648–1654 (2009)CrossRefGoogle Scholar
  57. 57.
    I. Jlassi, N. Sdiri, H. Elhouichet, Electrical conductivity and dielectric properties of MgO doped lithium phosphate glasses. J. Non-Cryst. Solids 466–467, 45–51 (2017)CrossRefGoogle Scholar
  58. 58.
    V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, Electrical relaxation in Na2O·3SiO2 Glass. J. Am. Ceram. Soc. 55, 492–496 (1972)CrossRefGoogle Scholar
  59. 59.
    P. Ganguly, A.K. Jha, Impedance spectroscopy analysis of Ba5NdTi3Nb7O30 ferroelcetric ceramics. Phys. B 405, 3154–3158 (2010)CrossRefGoogle Scholar
  60. 60.
    R.S. Gedam, D.D. Ramteke, Electrical, dielectric and optical properties of La2O3 doped lithium borate glasses. J. Phys. Chem. Solids 74, 1039–1044 (2013)CrossRefGoogle Scholar
  61. 61.
    H. Namikawa, Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. J. Non-Cryst. Solids 18, 173–195 (1975)CrossRefGoogle Scholar
  62. 62.
    B.S. Kang, S.K. Choi, Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C. J. Appl. Phys. 94, 1904–1911 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  2. 2.Physics Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations