Colossal dielectric response in Ba1.5Sr1.5Co2Fe24O41 ceramics at high-temperature

  • C. L. Li
  • T. Y. Yan
  • G. O. Barasa
  • Y. H. Li
  • R. Zhang
  • S. Huang
  • S. L. Yuan


Polycrystalline Ba1.5Sr1.5Co2Fe24O41 ceramics were prepared by the sol–gel method with clear grains and grain boundaries having been identified by the scanning electron microscopy. High-temperature colossal dielectric response has been observed and studied through a series of dielectric and impedance measurements. The electrode effect was also studied and the measurement findings reveal that the colossal dielectric permittivity at low frequency is ascribed to the extrinsic effect of Maxwell Wagner polarization. Dielectric relaxation was identified and investigated by the impedance spectra, which is attributed to the thermally activated model. The complex impedance data is simulated with an equivalent electric circuit and the result suggests that the electric response originates from both the grains and grain boundaries. The activation energies of the grains and grain boundaries are calculated which are 0.62 and 0.67 eV, respectively. The comparable activation energies obtained from the complex impedance spectra and DC conductivity indicates that the relaxation may result from the conduction process. Besides, scaling behaviors are observed below 550 K suggesting that the relaxation time is temperature independent.



We appreciate the helpful discussions held with Dr. Changming Zhu. This work was supported by the National Natural Science Foundation of China (Grant No. 11474111) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704091). We thank the staffs of Analysis Center of HUST for their assistance in various measurements.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.


  1. 1.
    Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as critical phenomenon. Nature 441, 956–959 (2006)CrossRefGoogle Scholar
  2. 2.
    C.Y. Shi, Y.M. Hao, Z.B. Hu, Microstructure and colossal dielectric behavior of Ca2TiMnO6 ceramics. Scr. Mater. 64, 272–275 (2011)CrossRefGoogle Scholar
  3. 3.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  4. 4.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Huang, L.R. Shi, Z.M. Tian, et at., High-temperature colossal dielectric response in RFeO3 (R = La, Pr and Sm) ceramics. Ceram. Int. 41, 691–698 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Huang, K.P. Su, H.O. Wang et al., High temperature dielectric response in R3Fe5O12. Mater. Chem. Phys. 197, 11–16 (2017)CrossRefGoogle Scholar
  7. 7.
    C.L. Li, S. Huang, X.H. Chen et al., Colossal dielectric response and relaxation properties in Co2Z-type hexaferrites. Ceram. Int. 43, 12435–12441 (2017)CrossRefGoogle Scholar
  8. 8.
    J.T. Wu, Z. Shi, J. Xu et al., Synthesis and room temperature four-state memory prototype of Sr3Co2Fe24O41 multiferroics. Appl. Phys. Lett. 101, 122903 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, Y.G. Zhao, Y.F. Cui et al., Magnetodielectric effect in Z-type hexaferrite. Appl. Phys. Lett. 100, 032901 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Raju, S. Shravan Kumar Reddy, J. Ramesh et al., Magnetic, ferroelectric, and spin phonon coupling of Sr3Co2Fe24O41 multiferroic Z-type hexaferrite. J. Appl. Phys. 120, 054103 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Takada, T. Nakagawa, M. Tokunaga et al., Crystal and magnetic structures and their temperature dependence of Co2Z-type hexaferrite (Ba, Sr)3Co2Fe24O41 by high-temperature neutron diffraction. J. Appl. Phys. 100, 043904 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Soda, T. Ishikura, H. Nakamura et al., Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41. Phys. Rev. Lett. 106, 087201 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Bao, J. Zhou, Z.X. Yue et al., Dielectric behavior of Mn-substituted Co2Z hexaferrites. J. Magn. Magn. Mater. 250, 131–137 (2002)CrossRefGoogle Scholar
  14. 14.
    M.M. Costa, G.F.M. Pires Jr., A.J. Terezo et al., Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22. J. Appl. Phys. 110, 034107 (2011)CrossRefGoogle Scholar
  15. 15.
    V.G. Harris, A. Geiler et al., Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Lee, Y.K. Hong, S. Bae et al., Low loss Co2Z (Ba3Co2Fe24O41)-glass composite for gigahertz antenna application. J. Appl. Phys. 109, 07E530 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Sharma, K.S. Daya, S. Sharma et al., Sol–gel auto combustion processed soft Z-type hexa nanoferrites for microwave antenna miniaturization. Ceram. Int. 41, 7109–7114 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Kikuchi, T. Nakamura, T. Yamasaki et al., Synthesis of single-phase Sr3Co2Fe24O41 Z-type ferrite by polymerizable complex method. Mater. Res. Bull. 46, 1085–1087 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Qin, H. Verweij, Modified Pechini synthesis of hexaferrite Co2Z with high permeability. Mater. Lett. 68, 143–145 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Rehman, J.B. Li, M.S. Cao et al., Contribution of grains and grain boundaries to dielectric relaxations and conduction of Aurivillius Bi4Ti2Fe0.5Nb0.5O12 ceramics. Ceram. Int. 41, 14652–14659 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981)CrossRefGoogle Scholar
  22. 22.
    P.F. Liang, Y.Y. Li et al., Origin of giant permittivity and high-temperature dielectric anomaly behavior in Na0.5Y0.5Cu3Ti4O12 ceramics. J. Appl. Phys. 113, 224102 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Idrees, M. Nadeem et al., Origin of colossal dielectric response in LaFeO3. Acta Mater. 59, 1338–1345 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Li, C. Derek et al., Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramic at high temperatures: a cautionary tale. J. Appl. Phys. 109, 084106 (2011)CrossRefGoogle Scholar
  25. 25.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  26. 26.
    R.J. Tang, C. Jiang, J. Jian et al., Impedance spectroscopy and scaling behaviors of Sr3Co2Fe24O41 hexaferrite. Appl. Phys. Lett. 106, 022902 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Rehman, J.B. Li, J.S. Zhang, Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics. J. Appl. Phys. 118, 214101 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Saha, T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B 65, 134103 (2002)CrossRefGoogle Scholar
  29. 29.
    J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, An alternative representation of impedance spectra of ceramics. Mater. Res. Bull. 35, 727–740 (2000)CrossRefGoogle Scholar
  30. 30.
    N. Ortega, A. Kumar, P. Bhattacharya et al., Impedance spectroscopy of multiferroic PbZrxTi1–xO3/CoFe2O4 layered thin films. Phys. Rev. B 77, 014111 (2008)CrossRefGoogle Scholar
  31. 31.
    Y.J. Wu, Y. Gao, X.M. Chen, Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range. Appl. Phys. Lett. 91, 092912 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. L. Li
    • 1
  • T. Y. Yan
    • 1
  • G. O. Barasa
    • 1
  • Y. H. Li
    • 1
  • R. Zhang
    • 1
  • S. Huang
    • 2
  • S. L. Yuan
    • 1
  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations