Advertisement

Photocatalytic degradation of cationic and anionic dyes by a novel nanophotocatalyst of TiO2/ZnTiO3/αFe2O3 by ultraviolet light irradiation

  • Maryam Mehrabi
  • Vahid Javanbakht
Article

Abstract

In this study, TiO2 nanoparticles were synthesized by sol–gel method and then modified with ZnTiO3 and αFe2O3 nanoparticles to enhance the photocatalytic properties. The synthesized materials were characterized by FESEM, XRD, FTIR, and UV–visible techniques and used to the removal of cationic azo dye (methylene blue) and anionic azo dye (methyl orange) from aqueous solutions. The factors affecting the photocatalytic degradation of dyes, including the initial concentration of dye, photocatalyst amount, pH of the dye solution, and the time of radiation were investigated. The TiO2 and TiO2/ZnTiO3/αFe2O3 samples indicated a bandgap energy of 3.10 and 2.17 eV, respectively, which suggests better photocatalytic properties for TiO2/ZnTiO3/αFe2O3 sample compared to TiO2. Also, the photocatalytic activity of TiO2/ZnTiO3/αFe2O3 was further developed in the visible range. The relationship between the photocatalytic performance of the samples and their structures shows that ZnTiO3 and hematite deposits can significantly enhance the photocatalytic efficiency of TiO2 nanoparticles.

Notes

Acknowledgements

Financial support of this work by ACECR Institute of Higher Education (Isfahan Branch) is gratefully appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    O.A.I. Masood, M.I.A. Al-Hady, A.K.M. Ali, Applying the principles of green architecture for saving energy in buildings. Energy Proc. 115, 369–382 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Hunge, Photoelectrocatalytic degradation of methylene blue using spray deposited ZnO thin films under UV illumination. MOJ Poly Sci. 1(4), 00020 (2017)Google Scholar
  3. 3.
    E. Bazrafshan, M. Ahmadabadi, A.H. Mahvi, Reactive red-120 removal by activated carbon obtained from cumin herb wastes. Fresenius Environ. Bull. 22(2a), 584–590 (2013)Google Scholar
  4. 4.
    A. Lopes et al., Degradation of a textile dye CI Direct Red 80 by electrochemical processes. Port. Electrochim. Acta 22(3), 279–294 (2004)CrossRefGoogle Scholar
  5. 5.
    A.H. Movahedian, R. Rezaei, Investigating the efficiency of advanced photochemical oxidation (APO) technology in degradation of direct azo dye by UV/H2O2 process. Wat. Wast. 17(3), 75–83 (2006)Google Scholar
  6. 6.
    I. Fajriati, Mudasir, E.T. Wahyuni, The Influence of Cu(II) on methyl orange and methylene blue photodegradation catalyzed by TiO2–chitosan nanocomposites. Int. J. Adv. Chem. Eng. Biol. Sci. (IJACEBS) 1, 21–24 (2014)Google Scholar
  7. 7.
    M.N. Chong et al., Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Jonidi Jafari et al., Photocatalytic removal of aniline from synthetic wastewater using ZnO nanoparticle under ultraviolet irradiation. Iran. J. Health Environ. 5(2), 167–178 (2012)Google Scholar
  9. 9.
    Y. Hunge et al., Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J. Mater. Sci. Mater. Electron. 29(5), 3808–3816 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Hunge et al., Oxidative degradation of benzoic acid using spray deposited WO3/TiO2 thin films. J. Mater. Sci. Mater. Electron. 28(23), 17976–17984 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Ali, Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci. Mater. Electron. 29(2), 1209–1215 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.M. Hunge, Photoelectrocatalytic degradation of 4-chlorophenol using nanostructured α-Fe2O3 thin films under sunlight illumination. J. Mater. Sci. Mater. Electron. 28(15), 11260–11267 (2017)CrossRefGoogle Scholar
  13. 13.
    X.-H. Qi et al., Decomposition of aniline in supercritical water. J. Hazard. Mater. 90(1), 51–62 (2002)CrossRefGoogle Scholar
  14. 14.
    R. Devulapalli, F. Jones, Separation of aniline from aqueous solutions using emulsion liquid membranes. J. Hazard. Mater. 70(3), 157–170 (1999)CrossRefGoogle Scholar
  15. 15.
    S. Saeedi et al., Investigation of experimental factors in photocatalytical degradation of phenol from aqueous solution by UV/ZnO. J. Environ. Health Eng. 3(3), 220–227 (2016)CrossRefGoogle Scholar
  16. 16.
    R.-S. Juang, S.-H. Lin, P.-Y. Hsueh, Removal of binary azo dyes from water by UV-irradiated degradation in TiO2 suspensions. J. Hazard. Mater. 182(1), 820–826 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Kusvuran et al., Comparison of several advanced oxidation processes for the decolorization of reactive red 120 azo dye in aqueous solution. J. Hazard. Mater. 109(1), 85–93 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Faisal, M.A. Tariq, M. Muneer, Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes Pigm. 72(2), 233–239 (2007)CrossRefGoogle Scholar
  19. 19.
    B. Shahmoradi et al., Modification of neodymium-doped ZnO hybrid nanoparticles under mild hydrothermal conditions. Nanoscale 2(7), 1160–1164 (2010)CrossRefGoogle Scholar
  20. 20.
    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)CrossRefGoogle Scholar
  21. 21.
    L. Armelao et al., Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18(37), 375709 (2007)CrossRefGoogle Scholar
  22. 22.
    H. Zhou, D.W. Smith, Advanced technologies in water and wastewater treatment. J. Environ. Eng. Sci. 1(4), 247–264 (2002)CrossRefGoogle Scholar
  23. 23.
    F. Akbal, A.N. Onar, Photocatalytic degradation of phenol. Environ. Monitor. Assess. 83(3), 295–302 (2003)CrossRefGoogle Scholar
  24. 24.
    K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol. Energy 53(2), 187–190 (1994)CrossRefGoogle Scholar
  25. 25.
    T. Surendar, S. Kumar, V. Shanker, Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol–gel method. Phys. Chem. Chem. Phys. 16(2), 728–735 (2014)CrossRefGoogle Scholar
  26. 26.
    M.S. Dresselhaus et al., Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)CrossRefGoogle Scholar
  27. 27.
    V. Ponnusami, S. Vikram, S. Srivastava, Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 152(1), 276–286 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Mohseni et al., Synthesis TiO2/SiO2/Ag triple nanocomposite by sonochemical method and investigation of photo-catalyst effect in wastewater treatment, in Nanocon, Brno, Czech Republic (2013)Google Scholar
  29. 29.
    P.L. Hariani, M. Faizal, D. Setiabudidaya, Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int. J. Environ. Sci. Dev. 4(3), 336 (2013)CrossRefGoogle Scholar
  30. 30.
    J.B. De Heredia et al., Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic. J. Hazard. Mater. 83(3), 255–264 (2001)CrossRefGoogle Scholar
  31. 31.
    B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104(9), 3893–3946 (2004)CrossRefGoogle Scholar
  32. 32.
    R. Saravanan et al., Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Saravanan et al., ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C 33(4), 2235–2244 (2013)CrossRefGoogle Scholar
  34. 34.
    R. Saravanan et al., Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 33(8), 4725–4731 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Mishra, H. Park, D.-M. Chun, Photocatalytic properties of Au/Fe2O3 nano-composites prepared by co-precipitation. Adv. Powder Technol. 27(1), 130–138 (2016)CrossRefGoogle Scholar
  36. 36.
    D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, Photocatalytic degradation for environmental applications: a review. J. Chem. Technol. Biotechnol. 77(1), 102–116 (2002)CrossRefGoogle Scholar
  37. 37.
    Z.C. Orel, M.K. Gunde, B. Orel, Application of the Kubelka–Munk theory for the determination of the optical properties of solar absorbing paints. Prog. Org. Coat. 30(1–2), 59–66 (1997)CrossRefGoogle Scholar
  38. 38.
    K.M. Reddy, S.V. Manorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78(1), 239–245 (2003)CrossRefGoogle Scholar
  39. 39.
    R. Saravanan et al., The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 177, 394–401 (2013)CrossRefGoogle Scholar
  40. 40.
    C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, Photocatalytic and bactericidal activities of hydrothermally and sonochemically prepared Fe2O3–SnO2 nanoparticles. Mater. Sci. Semicond. Process. 16(3), 818–824 (2013)CrossRefGoogle Scholar
  41. 41.
    M.Z. Ahmed et al., Photocatalytic activity of nanocrystalline ZnO, α-Fe2O3 and ZnFe2O4/ZnO. Appl. Nanosci. 5(8), 961–968 (2015)CrossRefGoogle Scholar
  42. 42.
    R. Liu et al., Synthesis and bactericidal ability of TiO2 and Ag–TiO2 prepared by coprecipitation method. Int. J. Photoenerg. 2012, 1–7 (2012)Google Scholar
  43. 43.
    H. Koohestani, M. Alinejad, S.K. Sadrnezhaad, Characterization of TiO2–ZrO2 nanocomposite prepared by co-precipitation method. Adv. Nanocompos. Res. (2015).  https://doi.org/10.22075/ancr.2015.231 Google Scholar
  44. 44.
    N. Padmamalini, K. Ambujam, Structural and dielectric properties of ZrO2–TiO2–V2O5 nanocomposite prepared by CO-precipitation calcination method. Mater. Sci. Semicond. Process. 41, 246–251 (2016)CrossRefGoogle Scholar
  45. 45.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49(1), 1–14 (2004)CrossRefGoogle Scholar
  46. 46.
    Y. Yu et al., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 289(2), 186–196 (2005)CrossRefGoogle Scholar
  47. 47.
    C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122(1), 178–192 (1990)CrossRefGoogle Scholar
  48. 48.
    Y.-C. Chan, J.-N. Chen, M.-C. Lu, Intermediate inhibition in the heterogeneous UV-catalysis using a TiO2 suspension system. Chemosphere 45(1), 29–35 (2001)CrossRefGoogle Scholar
  49. 49.
    H. Al-Ekabi, N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem. 92(20), 5726–5731 (1988)CrossRefGoogle Scholar
  50. 50.
    T. Yetim, T. Tekin, A kinetic study on photocatalytic and sonophotocatalytic degradation of textile dyes. Period. Polytech. Chem. Eng. 61(2), 102 (2017)Google Scholar
  51. 51.
    C.-Y. Kuo, Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J. Hazard. Mater. 163(1), 239–244 (2009)CrossRefGoogle Scholar
  52. 52.
    Y.-J. Xu, Y. Zhuang, X. Fu, New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. J. Phys. Chem. C 114(6), 2669–2676 (2010)CrossRefGoogle Scholar
  53. 53.
    R. Gündoğan, B. Acemioğlu, M.H. Alma, Copper(II) adsorption from aqueous solution by herbaceous peat. J. Colloid Interface Sci. 269(2), 303–309 (2004)CrossRefGoogle Scholar
  54. 54.
    S. Cengiz, L. Cavas, Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Biores. Technol. 99(7), 2357–2363 (2008)CrossRefGoogle Scholar
  55. 55.
    S. Abo-Farha, Photocatalytic degradation of monoazo and diazo dyes in wastewater on nanometer-sized TiO2. J. Am. Sci. 6(11), 130–142 (2010)Google Scholar
  56. 56.
    F. Kiriakidou, D.I. Kondarides, X.E. Verykios, The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal. Today 54(1), 119–130 (1999)CrossRefGoogle Scholar
  57. 57.
    V. Javanbakht et al., A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb(II) ions from aqueous solution. Powder Technol. 302, 372–383 (2016)CrossRefGoogle Scholar
  58. 58.
    A. Mansouri et al., Preparation of poly ethyleneimine (PEI)/nano titania (TiO2) multilayer film on quartz tube by layer-by-layer self-assembly and its applications for petroleum refinery wastewater treatment. J. Taiwan Inst. Chem. Eng. 45(5), 2501–2510 (2014)CrossRefGoogle Scholar
  59. 59.
    Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology. Chemosphere 159, 552–564 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ACECR Institute of Higher Education (Isfahan Branch)IsfahanIran

Personalised recommendations