Enhancement of thermal and electrical conductivities of cyanoacrylate by addition of carbon based nanofillers

  • Hui-Chiang Teoh
  • Khatijah A. Yaacob
  • A. A. Saad
  • M. Mariatti
Article
  • 15 Downloads

Abstract

Nanocomposites with addition of graphite nanoparticles, multi-walled carbon nanotubes (MWCNTs), and graphene in cyanoacrylate from 0.1 to 0.5 or 0.6 vol% were fabricated. The influences of morphology towards thermal and electrical conductivities of cyanoacrylate nanocomposites were studied. Microstructure based on field emission scanning electron microscopy and transmission electron microscopy images indicated that nanofillers have unique morphologies which affect the thermal and electrical conductivities of nanocomposites. The maximum thermal conductivity values were measured at 0.3195 and 0.3500 W/mK for 0.4 vol% of MWCNTs/cyanoacrylate and 0.5 vol% of graphene/cyanoacrylate nanocomposite, respectively. These values were improved as high as 204 and 233% as compared with the thermal conductivity of neat cyanoacrylate. Nanocomposites with 0.2 vol% MWCNTs/cyanoacrylate fulfilled the requirement for ESD protection material with surface resistivity of 6.52 × 106 Ω/sq and volume resistivity of 6.97 × 109 Ω m. On the other hand, 0.5 vol% MWCNTs/cyanoacrylate nanocomposite can be used as electrical conductive adhesive. Compared with graphene and graphite nanofillers, MWCNTs is the best filler to be used in cyanoacrylate for improvement in thermal and electrical conductivity enhancement at low filler loading.

Notes

Acknowledgements

Financial supports from the Western Digital and MyBrain15 Postgraduate Scholarship are gratefully acknowledged.

References

  1. 1.
    C. Pan, J.Q. Zhang, K.C. Kou, Y. Zhang, G.L. Wu, Int. J. Heat Mass Transfer 120, 1 (2018)CrossRefGoogle Scholar
  2. 2.
    G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H.L. Lv, Chem. Eng. J. 333, 519 (2018)CrossRefGoogle Scholar
  3. 3.
    A.L. Feng, G.L. Wu, Y.Q. Wang, C. Pan, J. Nanosci. Nanotechnol. 17, 3859 (2017)CrossRefGoogle Scholar
  4. 4.
    J.Y. Choi, S.W. Kim, K.Y. Cho, Compos. Sci. Technol. 94, 147 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Narkis, G. Lidor, A. Vaxman, L. Zuri, J. Electrostat. 47, 201 (1999)CrossRefGoogle Scholar
  6. 6.
    M.H. Al-Saleh, U. Sundararaj, Carbon 47, 2 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Russ, S.S. Rahatekar, K. Koziol, B. Farmer, H.X. Peng, Compos. Sci. Technol. 81, 42 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Shi, J.W. Zhu, X. Shen, F.X. Chen, F.G. Ning, H.D. Zhang, Y.Z. Long, X. Ning, J.B. Zhao, RSC Adv. 8, 4072 (2018)CrossRefGoogle Scholar
  9. 9.
    Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Appl. Therm. Eng. 66, 493 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Huang, M. Gao, T. Pan, Y. Zhang, Y. Lin, Compos. Sci. Technol. 95, 16 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Kumlutaş, İ.H. Tavman, M.T. Çoban, Compos. Sci. Technol. 63, 113 (2003)CrossRefGoogle Scholar
  12. 12.
    R. Haggenmueller, C. Guthy, J.R. Lukes, J.E. Fischer, K.I. Winey, Macromolecules 40, 2417 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Ji, M.M. Stevens, Y. Zhu, Q. Gong, J. Wu, J. Liang, Carbon 47, 2733 (2009)CrossRefGoogle Scholar
  14. 14.
    T.E. Chang, A. Kisliuk, S.M. Rhodes, W.J. Brittain, A.P. Sokolov, Polymer 47, 7740 (2006)CrossRefGoogle Scholar
  15. 15.
    H.C. Teoh, M. Mariatti, Y. Khatijah, Procedia Chem. 19, 835 (2016)CrossRefGoogle Scholar
  16. 16.
    S.Y. Yang, C.C.M. Ma, C.C. Teng, Y.W. Huang, S.H. Liao, Y.L. Huang, H.W. Tien, T.M. Lee, K.C. Chiou, Carbon 48, 592 (2010)CrossRefGoogle Scholar
  17. 17.
    X. Liu, M.B. Chan-Park, J. Appl. Polym. Sci. 114, 3414 (2009)CrossRefGoogle Scholar
  18. 18.
    F. Gardea, D.C. Lagoudas, Compos. Part B 56, 611 (2014)CrossRefGoogle Scholar
  19. 19.
    S.Y. Kwon, I.M. Kwon, Y.G. Kim, S. Lee, Y.S. Seo, Carbon 55, 285 (2013)CrossRefGoogle Scholar
  20. 20.
    C.C. Teng, C.C.M. Ma, C.H. Lu, S.Y. Yang, S.H. Lee, M.C. Hsiao, M.Y. Yen, K.C. Chiou, T.M. Lee, Carbon 49, 5107 (2011)CrossRefGoogle Scholar
  21. 21.
    A.L. Feng, G.L. Wu, C. Pan, Y.Q. Wang, J. Nanosci. Nanotechnol. 17, 3786 (2017)CrossRefGoogle Scholar
  22. 22.
    G.L. Wu, Y.H. Cheng, Z.D. Wang, K.K. Wang, A.L. Feng, J. Mater. Sci. 28, 576 (2017)Google Scholar
  23. 23.
    M. Martin-Gallego, M.M. Bernal, M. Hernandez, R. Verdejo, M.A. Lopez-Manchado, Eur. Polym. J. 49, 1347 (2013)CrossRefGoogle Scholar
  24. 24.
    F. Wang, L.T. Drzal, Y. Qin, Z. Huang, J. Mater. Sci. 50, 1082 (2015)CrossRefGoogle Scholar
  25. 25.
    P. Pötschke, T.D. Fornes, D.R. Paul, Polymer 43, 3247 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hui-Chiang Teoh
    • 1
    • 2
  • Khatijah A. Yaacob
    • 1
  • A. A. Saad
    • 3
  • M. Mariatti
    • 1
  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.WD Media (Malaysia) SdnBayan LepasMalaysia
  3. 3.School of Mechanical EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations