Advertisement

Visible photocatalytic degradation of methylene blue on magnetic semiconducting La0.2Sr0.7Fe12O19

  • Debesh Devadutta Mishra
  • Yao Huang
  • Na Duan
  • Guolong Tan
Article
  • 57 Downloads

Abstract

Methylene blue (MB) is a representative of a class of dyestuffs resistant to biodegradation. This paper presents a novel photocatalytic degradation of MB by La0.2Sr0.7Fe12O19 compound, which is a traditional permanent magnet and displays a large magnetic hysteresis (M–H) loop. The remnant magnetic moment and coercive field are determined to be 52 emu/g and 5876 Oe, respectively. UV–Visible optical spectroscopy reveals that La0.2Sr0.7Fe12O19 is simultaneously a semiconductor, whose direct and indirect band gap energies are determined to be 1.47 and 0.88 eV, respectively. The near infrared band gap makes it a good candidate to harvest sunlight for photocatalytic reaction or solar cell devices. This magnetic compound demonstrates excellent photocatalytic activity on degradation of MB under visible illumination. The colour of MB dispersion solution changes from deep blue to pale white and the absorbance decreases rapidly from 1.8 down to zero when the illumination duration extends to 6 h. Five absorption bands did not make any blue shifts along with the reaction time, suggesting a one-stepwise degradation process of MB, which makes La0.2Sr0.7Fe12O19 a unique magnetic catalyst and differs from TiO2 and other conventional catalysts.

Notes

Acknowledgements

The authors appreciate Dr Xiaoguang Huang for the support of optical spectrum and photocatalytic measurements. The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant No. 11774276.

References

  1. 1.
    A. Cochardt, J. Appl. Phys. 37, 1112 (1966)CrossRefGoogle Scholar
  2. 2.
    S.T. Fardood, A. Ramazani, Z. Golfar, S.W. Joo, Appl. Organomet. Chem. 31, e3823 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Ramazani, S.T. Fardood, Z. Hosseinzadeh, F. Sadri, S.W. Joo, Iran. J.Catal. 7(3), 181–185 (2017)Google Scholar
  4. 4.
    S.T. Fardood, A. Ramazani, S. Moradi, J. Sol-Gel. Sci. Technol. 82, 432–439 (2017)CrossRefGoogle Scholar
  5. 5.
    S.T. Fardood, Z. Golfar, A. Ramazani, J. Mater. Sci. 28, 17002–17008 (2017)Google Scholar
  6. 6.
    S.T. Fardood, A. Ramazani, S. Moradi, Chem. J. Moldova 12(1), 115–118 (2017)CrossRefGoogle Scholar
  7. 7.
    S.T. Fardood, A. Ramazani, S. Moradi, P.A. Asiabi, J. Mater. Sci. 28, 13596–13601 (2017)Google Scholar
  8. 8.
    K. Atrak, A. Ramazani, S.T. Fardood, J. Mater. Sci. (2018).  https://doi.org/10.1007/s10854-018-8656-5 Google Scholar
  9. 9.
    E.S. Mehr, M. Sorbiun, A. Ramazani, S.T. Fardood, J. Mater. Sci. 29, 1333–1340 (2018)Google Scholar
  10. 10.
    M. Sorbiun, E.S. Mehr, A. Ramazani, S.T. Fardood, J. Mater. Sci. 29, 2806–2814 (2018)Google Scholar
  11. 11.
    U. Ozgur, Y. Alivov, H. Morkoc, J. Mater. Sci. 20, 789 (2009)Google Scholar
  12. 12.
    R.C. Pullar, Prog. Mater. Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Ataie, S. Heshmati-Manesh, J. Eur. Ceram. Soc. 21, 1951–1955 (2001)CrossRefGoogle Scholar
  14. 14.
    D.H. Chen, Y.Y. Chen, J. Colloid Interface Sci. 236, 41–46 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Jean, V. Nachbaur, J. Bran, J.-M. Le Breton, J. Alloys Compd. 496, 306–312 (2010)CrossRefGoogle Scholar
  16. 16.
    T.M.H. Dang, V.D. Trinh, D.H. Bui, M.H. Phan, D.C. Huynh, Adv. Nat. Sci. 3, 025015–025021 (2012)Google Scholar
  17. 17.
    X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, Phys. Status Solidi A 193, 314–319 (2002)CrossRefGoogle Scholar
  18. 18.
    W. Zhang, Y. Bai, P. Zhu, T. Zhao, R. Sun, Ceram. Int. 40, 11199–11204 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Sánchez-De, A.M. Jesús, C.A. Bolarín-Miró, R. Cortés-Escobedo, S. Valenzuela, Ammar, Ceram. Int. 40–3, 4033–4038 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Kojima, in Handbook of Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1982), pp. 305–391CrossRefGoogle Scholar
  21. 21.
    A.A. Nourbakhsh, M. Noorbakhsh, M. Nourbakhsh, M. Shaygan, K.J.D. Mackenzie, J. Mater. Sci. 22, 1297–1302 (2011)Google Scholar
  22. 22.
    X.Q. Shen, M.Q. Liu, F.Z. Song, Y.W. Zhu, Appl. Phys. A 104A, 109–116 (2011)CrossRefGoogle Scholar
  23. 23.
    X.S. Liu, W. Zhong, S. Yang, Z. Yu, B.X. Gu, Y.W. Du, J. Magn. Magn. Mater. 238, 207–214 (2002)CrossRefGoogle Scholar
  24. 24.
    M.R. Araki, A.A. Beslepkin, S.P. Kuntsevich, Mater. Lett. 57, 3427–3430 (2003)CrossRefGoogle Scholar
  25. 25.
    H. Luo, B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, J. Magn. Magn. Mater. 324, 2602–2608 (2012)CrossRefGoogle Scholar
  26. 26.
    X.S. Liu, P. Hernandez-Go´mez, K. Huang, S.Q. Zhou, Y. Wang, X. Cai, H.J. Sun, B. Ma, J. Magn. Magn. Mater. 305, 524–528 (2006)CrossRefGoogle Scholar
  27. 27.
    T.P. Xie, L.J. Xu, C.L. Liu, Powder Technol. 232, 87–92 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Ounnunkad, P. Winotai, J. Magn. Magn. Mater. 301, 292–300 (2006)CrossRefGoogle Scholar
  29. 29.
    C. Lei, S. Tang, Y. Du, Ceram. Int. 42, 15511–15516 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Prathap, W. Madhuri, J. Magn. Magn. Mater. 430, 114–122 (2017)CrossRefGoogle Scholar
  31. 31.
    T. Kauur, J. Sharma, S. Kumar, A.K. Srivastava, Cryst. Res. Technol. 52, 1700098 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  33. 33.
    M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341–357 (1993)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, R. Shi, J. Lin, Y. Zhu, Appl. Catal. B 100, 179–183 (2010)CrossRefGoogle Scholar
  35. 35.
    D. Zhao, G. Sheng, C. Chen, X. Wang, Appl. Catal. B 111, 303–308 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Lakshmi, R. Renganathan, S. Fujita, J. Photochem. Photobiol. A 88, 163–167 (1995)CrossRefGoogle Scholar
  37. 37.
    R.W. Matthews, J. Chem. Soc. Faraday Trans. 85, 1291–1302 (1989)CrossRefGoogle Scholar
  38. 38.
    K. Sopajaree, S.A. Qasim, S. Basak, K. Rajeshwar, J. Appl. Electrochem. 29, 533–539 (1999)CrossRefGoogle Scholar
  39. 39.
    D. Kai, L. Lu, G. Dawson, J. Huaibei Norm. Univ. 22, 1035–1040 (2011)Google Scholar
  40. 40.
    T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. A 140, 163–172 (2001)CrossRefGoogle Scholar
  41. 41.
    Z. Zhou, Z. Wang, X. Wang, X. Wang, J. Zhang, F. Dou, M. Jin, J. Xu, J. Alloys Compd. 610, 264–270 (2014)CrossRefGoogle Scholar
  42. 42.
    G.L. Tan, Y. Huang, H.H. Sheng, PLoS ONE 11(12), e0167084 (2016)CrossRefGoogle Scholar
  43. 43.
    G.L. Tan, H.H. Sheng, Acta Mater. 121, 144 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations