Advertisement

Fabrication of hollow core–shell conductive nanoparticles based on nanocrystalline cellulose for conductive adhesive

  • Huiyi Wang
  • Hao Pang
  • Daidong Wei
  • Tao Li
  • Qiwen Yong
  • Jianheng Huang
  • Bing Liao
Article
  • 126 Downloads

Abstract

A novel environmentally friendly method was developed to fabricate hollow core–shell conductive nanoparticles using a natural and nontoxic material, nanocrystalline cellulose (NCC), as the template. The NCC used in this study has nano-scale rod-like structure. After the oxidization to dialdehyde cellulose, the insulated NCC was functionalized by poly(dopamine) (PDA) in weakly alkaline conditions through Schiff base reaction and self-polymerization. The Schiff base can be hydrolyzed in an aqueous acetone solution via ultraviolet radiation so that the hollow structure constructed. This structure not only strengthened the mechanical properties but also provided more active sites for silver deposition. Utilizing the chelating ability of the catechol groups in PDA, electroless plating method was used to form the silver coating layer. Scanning electron microscope and Dynamic Light Scattering measurements indicated that these nanoparticles (NPs) had well-defined morphology and a mean diameter of 100–120 nm. Moreover, these prepared Ag–DA–NCC0 NPs exhibited excellent conductivity. Their electrical resistivity reached 0.2 mΩ·cm, which is much higher than that of many other conductive particles used in conductive adhesive.

Notes

Acknowledgements

This research was supported by the Guangdong Academy of Sciences Project (No. 2017GDASCX-0705).

References

  1. 1.
    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40, 3941 (2011).  https://doi.org/10.1039/c0cs00108b CrossRefGoogle Scholar
  2. 2.
    Z. Shi, G.O. Phillips, G. Yang, Nanoscale 5, 3194 (2013).  https://doi.org/10.1039/c3nr00408b CrossRefGoogle Scholar
  3. 3.
    J. Helge Kristiansen, Liu, (1998) IEEE International Symposium on Polymeric Electronics Packaging vol 21, p. 208.  https://doi.org/10.1109/95.705466
  4. 4.
    J.-Y. Kim, S. Kwon, D. Ihm, J. Mater. Process. Technol. 152, 357 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.04.381 CrossRefGoogle Scholar
  5. 5.
    Y.H. Kim, D.K. Lee, H.G. Cha, C.W. Kim, Y.S. Kang, J. Phys. Chem. C 111, 3629 (2007).  https://doi.org/10.1021/jp068302w CrossRefGoogle Scholar
  6. 6.
    Y. Li, C.P. Wong, (2006) Mater. Sci. Eng. R 51, 1.  https://doi.org/10.1016/j.mser.2006.01.001 CrossRefGoogle Scholar
  7. 7.
    D. Yang, W. Tiana, W. Wang et al., Electrochim. Acta 87, 9 (2013).  https://doi.org/10.1016/j.electacta.2012.08.122 CrossRefGoogle Scholar
  8. 8.
    N. Elhalawany, M.M. Saleeb, M.K. Zahran, J. Mater. Sci.: Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-7763-z Google Scholar
  9. 9.
    D. Ma, P. Bi, H. Meng et al., J. Mater. Sci.: Mater. Electron. (2015).  https://doi.org/10.1007/s10854-015-3388-2 Google Scholar
  10. 10.
    W. Wang, R. Li, M. Tian et al., (2013) ACS Appl. Mater. Interfaces 5, 2062.  https://doi.org/10.1021/am302956h CrossRefGoogle Scholar
  11. 11.
    Y. Ma, Q. Zhang, Appl. Surf. Sci. 258, 7774 (2012).  https://doi.org/10.1016/j.apsusc.2012.04.147 CrossRefGoogle Scholar
  12. 12.
    H.J. Han, Y.C. Choi, J.H. Han, Synth. Met. 199, 219 (2015).  https://doi.org/10.1016/j.synthmet.2014.11.014 CrossRefGoogle Scholar
  13. 13.
    V. Ball, D. Del Frari, M. Michel et al., BioNanoScience 2, 16 (2011).  https://doi.org/10.1007/s12668-011-0032-3 CrossRefGoogle Scholar
  14. 14.
    H. Lee, N.F. Scherer, P.B. Messersmith, Proceedings of the National Academy of Sciences of the United States of America, vol 103, p. 12999 (2006).  https://doi.org/10.1073/pnas.0605552103
  15. 15.
    H. Chi, B. Liu, G. Guan, Z. Zhang, M.Y. Han, Anal. 135, 1070 (2010).  https://doi.org/10.1039/c000285b CrossRefGoogle Scholar
  16. 16.
    T. Wang, M. Li, H. Gao, Y. Wu, J. Colloid Interface Sci. 353, 107 (2011).  https://doi.org/10.1016/j.jcis.2010.09.053 CrossRefGoogle Scholar
  17. 17.
    R. Zhang, S. Xu, Y. Zhu et al., Biosens. Bioelectron. 85, 381 (2016).  https://doi.org/10.1016/j.bios.2016.05.030 CrossRefGoogle Scholar
  18. 18.
    Y. Tan, W. Deng, Y. Li et al., J. Phys. Chem. B 114, 5016 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, M. Boon, A. Teo, Postma et al., J. Phys. Chem. B 117, 10504 (2013).  https://doi.org/10.1021/jp407106z CrossRefGoogle Scholar
  20. 20.
    Z. Li, J. Ding, M. Day, Y. Tao, Macromolecules 39, 2629 (2006).  https://doi.org/10.1021/ma0526793 CrossRefGoogle Scholar
  21. 21.
    M. Hao, M. Tang, W. Wang, M. Tian, L. Zhang, Y. Lu, Compos. B 95, 395 (2016).  https://doi.org/10.1016/j.compositesb.2016.03.084 CrossRefGoogle Scholar
  22. 22.
    Y. Shen, G. Wang, J. Ni, J. Sun, Synthesis 10, 1574 (2003).  https://doi.org/10.1055/s-2003-40513 CrossRefGoogle Scholar
  23. 23.
    C. Ding, Y. Sun, Y. Wang et al., Int. J. Biol. Macromol. 99, 578 (2017).  https://doi.org/10.1016/j.ijbiomac.2017.03.018 CrossRefGoogle Scholar
  24. 24.
    S. Mallakpour, A. Zadehnazari, React. Funct. Polym. 106, 112 (2016).  https://doi.org/10.1016/j.reactfunctpolym.2016.07.010 CrossRefGoogle Scholar
  25. 25.
    Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao, Polym. Chem. 1, 1430 (2010).  https://doi.org/10.1039/c0py00215a CrossRefGoogle Scholar
  26. 26.
    Y.Z. Ni, W.F. Jiang, G.S. Tong et al., Org. Biomol. Chem. 13, 686 (2015).  https://doi.org/10.1039/c4ob02080d CrossRefGoogle Scholar
  27. 27.
    E. Karabulut, T. Pettersson, M. Ankerfors, L. Wagberg, ACS Nano 6, 4731 (2012).  https://doi.org/10.1021/nn204620j CrossRefGoogle Scholar
  28. 28.
    Z. Huang, D. Wan, J. Huang, Chem. Lett. 30, 708 (2001).  https://doi.org/10.1246/cl.2001.708 CrossRefGoogle Scholar
  29. 29.
    W. Li, Q. Xu, Adv. Mater. Res. 988, 79 (2014).  https://doi.org/10.4028/www.scientific.net/AMR.988.79 CrossRefGoogle Scholar
  30. 30.
    R. Zhang, S. Xu, Y. Zhu et al., Biosens. Bioelectron. 85, 381 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huiyi Wang
    • 1
    • 2
  • Hao Pang
    • 1
  • Daidong Wei
    • 1
    • 2
  • Tao Li
    • 1
    • 2
  • Qiwen Yong
    • 1
    • 2
  • Jianheng Huang
    • 1
  • Bing Liao
    • 3
  1. 1.Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of ChemistryChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Guangdong Academy of SciencesGuangzhouChina

Personalised recommendations