Advertisement

Crystal structure, optical behavior and electrical conduction of the new organic–inorganic compound CH3NH3CdI3

  • Liuqi Zhang
  • Jilin Wang
  • Jingjing Wu
  • Shuyi Mo
  • Fei Long
  • Zhengguang Zou
  • Yihua Gao
Article
  • 117 Downloads

Abstract

A new organic–inorganic compound CH3NH3CdI3 (MACdI3) was prepared by solvent diffusion method. Single crystal diffraction results showed that MACdI3 had a monoclinic system with P21/c space group at room temperature. UV–Visible absorption spectra revealed that the optical band gap (\({E_g}\)) of 3.45 eV is in agreement with the theoretical value. Band structure and density of states calculations indicated that the valence band is mainly iodine 5p in character and the conduction band is the interaction between Cd 4d in character and iodine 5p states. The temperature dependent dielectric constant and alternating current (AC) conduction analysis displayed a phase transition at about 348 K, which could be confirmed by temperature dependent Raman spectra. AC conduction results demonstrated that the conduction in MACdI3 was attributed to correlated barrier hopping at 308–348 K and non-overlapping small polaron tunneling at 348–398 K.

Notes

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51372044), Guangxi Natural Science Foundation (No. 2014GXNSFFA118004), and Opening Fund of Guangxi Key Laboratory of Building New Energy and Energy Saving (No. 16-J-21-10).

Supplementary material

10854_2018_9022_MOESM1_ESM.doc (864 kb)
Supplementary material 1 (DOC 864 KB)

References

  1. 1.
    W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, B. Sahraoui, A switchable NLO organic-inorganic compound based on conformationally chiral disulfide molecules and Bi(III)I5 iodobismuthate networks. Adv. Mater. 20, 1013–1017 (2008)CrossRefGoogle Scholar
  2. 2.
    P. Baker, T. Lancaster, I. Franke, W. Hayes, S. Blundell, F. Pratt, P. Jain, Z. Kurmoo, Muon spin relaxation investigation of magnetic ordering in the hybrid organic-inorganic perovskites [(CH3)2NH2]M(HCOO)3 (M = Ni, Co, Mn, Cu). Phys. Rev. B 82, 012407 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Staśkiewicz, A. Staśkiewicz, The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound. J. Phys. Chem. Solids 106, 65–75 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Mostafa, S. El-Khiyami, Crystal structure and electric properties of the organic-inorganic hybrid: [(CH2)6(NH3)2]ZnCl4. J. Solid State Chem. 209, 82–88 (2014)CrossRefGoogle Scholar
  5. 5.
    I. Chaabane, F. Hlel, K. Guidara, Electrical study by impedance spectroscopy of the new compound [C12H17N2]2CdCl4. J. Alloys Compd. 461, 495–500 (2008)CrossRefGoogle Scholar
  6. 6.
    P. Ren, J. Qin, T. Liu, S. Zhang, Synthesis, structure and second harmonic generation of novel inorganic–organic hybrid, (p-cyano-1-hydrogenpyridinium)2CdI4. Inorg. Chem. Comm. 7, 134–136 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, P. Yang, J. Meng, Synthesis, crystal structure and optical properties of a novel organic–inorganic hybrid materials (C9H14N)2PbCl4. Solid State Sci. 13, 1036–1040 (2011)CrossRefGoogle Scholar
  8. 8.
    J. Liu, X. Li, J. Wu, Z. Dai, X. Song, Structural transformation of an imidazolium-templated two-dimensional aluminophosphate and its proton conduction under anhydrous conditions. Mater. Lett. 184, 119–122 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Yokota, H. Maeda, T. Kasuga, Preparation of hybrids derived from zinc phosphate glasses and benzimidazole for anhydrous proton conduction applications. J. Mater. Sci. 52, 2263–2269 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Szklarz, A. Pietraszko, R. Jakubas, G. Bator, P. Zieliński, M. Gałazka, Structure, phase transitions and molecular dynamics of [C(NH2)3]3[M2I9], M = Sb, Bi. J. Phys.: Condens. Matter 20, 255221 (2008)Google Scholar
  11. 11.
    S. Lv, S. Pang, Y. Zhou, N.P. Padture, H. Hu, L. Wang, X. Zhou, L. Zhang, H. Zhu, C. Huang, One-step, solution-processed formamidinium lead trihalide (FAPbI(3–x)Clx) for mesoscopic perovskite-polymer solar cells. Phys. Chem. Chem. Phys. 16, 19206–19211 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, H. Ye, W. Zhang, R. Xiong, Room-temperature ABX3-typed molecular ferroelectric: [C5H9NH3][CdCl3]. Inorg. Chem. Front. 1, 118–123 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Ye, Y. Zhang, D. Fu, R. Xiong, An above-room-temperature ferroelectric organo-metal halide perovskite:(3-pyrrolinium)(CdCl3). Angew. Chem. Int. Ed. 53, 11242–11247 (2014)CrossRefGoogle Scholar
  14. 14.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)CrossRefGoogle Scholar
  16. 16.
    Y.F. Chen, Y.T. Tsai, D.M. Bassani, L. Hirsch, Experimental evidence of the anti-parallel arrangement of methylammonium ions in perovskites. Appl. Phys. Lett. 109, 213504 (2016)CrossRefGoogle Scholar
  17. 17.
    H.S. Kim, S.K. Kim, B.J. Kim, K.S. Shin, M.K. Gupta, H.S. Jung, S.W. Kim, N.G. Park, Ferroelectric polarization in CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1729–1735 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Ben Bechir, K. Karoui, A. Bulou, M. Tabellout, K. Guidara, A. Ben Rhaiem, [N(CH3)3H]2ZnCl4: Ferroelectric properties and characterization of phase transitions by Raman spectroscopy. J. Appl. Phys. 116, 214104 (2014)CrossRefGoogle Scholar
  19. 19.
    C.B. Mohamed, K. Karoui, A. Bulou, A.B. Rhaiem, Raman studies of phase transitions in ferroelectric [C2H5NH3]2ZnCl4. Physica E 87, 141–149 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Navas, A. Sánchez-Coronilla, J.J. Gallardo, N.C. Hernández, J.C. Piñero, R. Alcántara, C. Fernández-Lorenzo, M. Desireé, T. Aguilar, J. Martín-Calleja, New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+. Nanoscale 7, 6216–6229 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Pazoki, T.J. Jacobsson, A. Hagfeldt, G. Boschloo, T. Edvinsson, Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: replacement of lead with alkaline-earth metals. Phys. Rev. B 93, 144105 (2016)CrossRefGoogle Scholar
  22. 22.
    V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926)CrossRefGoogle Scholar
  23. 23.
    G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, J. Feng, CH3NH3Cd0.875Pb0.125I3 perovskite as potential photovoltaic materials. AIP Adv. 6, 115208 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Navas, A. Sánchez-Coronilla, J.J. Gallardo et al., Revealing the role of Pb2+ in the stability of organic–inorganic hybrid perovskite CH3NH3Pb1 – xCdxI3: an experimental and theoretical study. Phys. Chem. Chem. Phys. 17, 23886–23896 (2015)CrossRefGoogle Scholar
  26. 26.
    J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)CrossRefGoogle Scholar
  27. 27.
    G.M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect. A 64: 112–122 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, Y. Wang, Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  31. 31.
    T. Glaser, C. Müller, M. Sendner, C. Krekeler, O.E. Semonin, T.D. Hull, O. Yaffe, J.S. Owen, W. Kowalsky, A. Pucci, Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 6, 2913–2918 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Ivanovska, C. Quarti, G. Grancini, A. Petrozza, F. De Angelis, A. Milani, G. Ruani, Vibrational response of methyl ammonium lead iodide: from cation dynamics to phonon-phonon interactions. ChemSusChem 9, 2994–3004 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Xie, T. Zhang, L. Chen, N. Guo, Y. Wang, G. Liu, J. Wang, J. Zhou, J. Yan, Y. Zhao, Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. Phys. Chem. Chem. Phys. 18: 18112–18118 (2016)CrossRefGoogle Scholar
  34. 34.
    R.G. Niemann, A.G. Kontos, D. Palles, E.I. Kamitsos, A. Kaltzoglou, F. Brivio, P. Falaras, P.J. Cameron, Halogen effects on ordering and bonding of CH3NH3 + in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites: a Vibrational Spectroscopic Study. J. Phys. Chem. C 120, 2509–2519 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. J. Alloys Compd. 584, 209–215 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Elwej, S. Nasri, F. Hlel, Impedance spectroscopic investigation on phase transition and electrical conduction mechanism of the new inorganic-organic complex: (C6H9N2)2HgCl4 (I), (C6H9N2)2(Hg0.75Cd0.25)Cl4 (II) and (C6H9N2)2(Hg0.12Zn0.88)Cl4 (III). J. Alloys Compd. 684, 389–396 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Key Laboratory of Nonferrous Material and New Processing Technology of Ministry of EducationGuilin University of TechnologyGuilinChina
  2. 2.Guilin University of Technology, Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in GuangxiGuilinChina
  3. 3.Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) and School of PhysicsHuazhong University of Science and Technology (HUST)WuhanChina

Personalised recommendations