Advertisement

Sr3GdLi(PO4)3F: Sm3+ phosphor: preparation and luminescence properties evaluation

  • Sheng Deng
  • Wei Zhang
  • Zhengfa Hu
  • Zuyong Feng
  • Peiju Hu
  • Lun Ma
  • Xia Sheng
  • Yongman Pan
  • Li Luo
Article

Abstract

A series of Sr3Gd1−xLi(PO4)3F: xSm3+ (x = 0.02, 0.04, 0.06, 0.08) phosphors were synthesized by a high-temperature solid state method. The Sm3+ activated Sr3GdLi(PO4)3F phosphors can be efficiently excited by the wavelengths in the range from 350 to 450 nm, which matches perfectly with that of the commercial near-UV LED chips. The optimal doping concentration of Sr3Gd1−xLi(PO4)3F: xSm3+ phosphors was determined to be x = 0.04, corresponding to the quantum efficiency of 2.23%, and the CIE chromaticity coordinates (x = 0.5172, y = 0.4641). The concentration quenching mechanism of Sm3+ in Sr3GdLi(PO4)3F host is mainly attributed to the dipole–dipole interaction, which was confirmed by the fluorescent lifetimes. The effect of temperature on the photoluminescence property of Sr3GdLi(PO4)3F: Sm3+ was investigated. 90% of the intensity is preserved at 150 °C. In addition, a white light emitting diode (WLED) lamp was fabricated by a 405 nm n-UV LED chip coated with Sr3Gd0.96Li(PO4)3F:0.04Sm3+ phosphor and commercial yellow phosphor (YAG: Ce3+) of a certain mass ratio. The present work indicates that the Sr3GdLi(PO4)3F: Sm3+ orange–red-emitting phosphors tend to be potential application in n-UV WLED.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No.11574058), Guangzhou science and technology project (Grant Nos. 201510010285, 201607010102) and the Joint training demonstration base project of Guangdong Province Graduate student in 2016.

References

  1. 1.
    Y.C. Lin, M. Karlsson, M. Bettinelli, Top. Curr. Chem. 374, 1 (2016)CrossRefGoogle Scholar
  2. 2.
    S.X. Liu, W. Zhang, Z.F. Hu, Z.Y. Feng, X. Sheng, Y.L. Liang, J. Mater. Sci. Mater. Electron. 24, 4253 (2013)CrossRefGoogle Scholar
  3. 3.
    Z.G. Xia, J.H. Ji, Z.H. Huang, V.V. Atuchin, Inorg. Chem. 53, 5129 (2014)CrossRefGoogle Scholar
  4. 4.
    Y.H. Jin, Y.H. Hu, H.Y. Wu, Chem. Eng. J. 288, 596 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.H. Jin, Y.R. Fu, H.Y. Wu, Powder Technol. 292, 74 (2016)CrossRefGoogle Scholar
  6. 6.
    X.X. Di, X.L. He, J.T. Jiang, J. Mater. Sci. Mater. Electron. 28, 8611 (2017)CrossRefGoogle Scholar
  7. 7.
    Y.H. Wu, Z.W. Chi, T. He, J. Mater. Sci. Mater. Electron. 28, 14591 (2017)CrossRefGoogle Scholar
  8. 8.
    Y.Q. Shen, K.H. Qiu, J.L. Wang, Ceram. Int. 43, 15946 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Kumari, A. Pandey, R. Dey., V.K. Rai, RSC Adv. 4, 21844 (2014)CrossRefGoogle Scholar
  10. 10.
    J.Y. Li, R. Pang, W.Z. Sun, J. Mater. Sci. Mater. Electron. 29, 4163 (2018)CrossRefGoogle Scholar
  11. 11.
    X.Q. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, N. Kijima, Chem. Mater. 19, 4592 (2007)CrossRefGoogle Scholar
  12. 12.
    Y.H. Jin, Y.H. Hu, H.Y. Wu, Chem. Eng. J. 288, 595 (2016)CrossRefGoogle Scholar
  13. 13.
    M.M. Jiao, Y.J. Jia, W. Lu, J. Mater. Chem. C. 2, 90 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Daicho, T. Iwasaki, K. Enomoto, Nat. Commun. 3, 1 (2012)CrossRefGoogle Scholar
  15. 15.
    Z.G. Xia, R.-S. Liu, J. Phys. Chem. C. 116, 15604 (2012)CrossRefGoogle Scholar
  16. 16.
    J.Y. Sun, X.Y. Zhang, Z.G. Xia, J. Appl. Phys. 111, 013101 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Zeng, Y.M. Hu, L.J. Wang, J. Rare Earth. 35, 767 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Zhu, C. Wang, S.Y. Xin, Mater. Res. Bull. 92, 99 (2017)CrossRefGoogle Scholar
  19. 19.
    B. Ma, B.X. Liu, J. Lumin. 188, 54 (2017)CrossRefGoogle Scholar
  20. 20.
    H.R. Shih, Y.S. Chang, Mater. 10, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    S.S. Hu, W.J. Tang, J. Lumin. 145, 100 (2014)CrossRefGoogle Scholar
  22. 22.
    H.K. Zhu, Z.G. Xia, H.K. Liu, Mater. Res. Bull. 48, 3513 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Huan, L.F. Hu, X.S. Fang, ACS Appl. Mater. Interfaces. 6, 1462 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Lv, Y.H. Jin, S.A. Zhang, Ceram. Int. 43, 8824 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Han, Y.M. Sun, J.Y. Sun, J. Rare Earth. 34, 12 (2016)CrossRefGoogle Scholar
  26. 26.
    Y.H. Jin, Y.H. Hu, Y.R. Fu, J. Mater. Chem. C. 3, 9435 (2015)CrossRefGoogle Scholar
  27. 27.
    Y.Q. Zhai, W. Zhang, X. Zhao, J. Mater. Sci. Mater. Electron. 28, 17726 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Stojadinovic, N. Tadic, R. Vasilic, J. Lumin. 192, 110 (2017)CrossRefGoogle Scholar
  29. 29.
    H.J. Qian, J.Y. Zhang, L.Q. Yin, RSC Adv. 3(23), 9029 (2013)CrossRefGoogle Scholar
  30. 30.
    Y.C. Jia, H. Qiao, Y.H. Zheng, N. Guo, H.P. You, Phys. Chem. Chem. Phys. 14, 3537 (2012)CrossRefGoogle Scholar
  31. 31.
    L. Han, D.H. Xu, Q.G. Xu, J. Mater. Sci. 50, 2257 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Guo, B.K. Moon, B.C. Choi, J.H. Jeong, J.H. Kim, Mater. Res. Bull. 88, 166 (2017)CrossRefGoogle Scholar
  33. 33.
    V. Uma, M. Vijayakumar, K. Marimuthu, J. Mol. Struct. 1151, 266 (2018)CrossRefGoogle Scholar
  34. 34.
    Y.H. Jin, Y. Lv, Y.H. Hu, J. Lumin. 185, 106 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Deng
    • 1
  • Wei Zhang
    • 1
    • 2
  • Zhengfa Hu
    • 1
    • 2
  • Zuyong Feng
    • 1
  • Peiju Hu
    • 4
  • Lun Ma
    • 3
  • Xia Sheng
    • 1
  • Yongman Pan
    • 1
  • Li Luo
    • 1
  1. 1.School of Physics & Optoelectronic EngineeringGuangdong University of TechnologyGuangzhouChina
  2. 2.Synergy Innovation Institute for Modern Industries of GDUTDongyuanChina
  3. 3.Department of PhysicsThe University of Texas at ArlingtonArlingtonUSA
  4. 4.Department of electronic and information engineeringGuangzhou College of Technology and BusinessGuangzhouChina

Personalised recommendations