Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures

  • Rajwali Khan
  • Zulfiqar
  • Clodoaldo Irineu Levartoski de Araujo
  • Tahirzeb Khan
  • Muneeb-Ur-Rahman
  • Zia-Ur-Rehman
  • Aurangzeb Khan
  • Burhan Ullah
  • Simbarashe Fashu


We analysed the variation and effect of oxygen vacancies on the structural, dielectric and magnetic properties in case of Mn (4%) and Co (1, 2 and 4%) co-doped ZnO nanoparticles (NPs), synthesized by chemical precipitation route and annealed at 750 °C for 2 h. From the XRD, the calculated average crystallite size increased from15.30 ± 0.73 nm to 16.71 ± 012 nm, when Co content is increased from 1 to 4%. Enhancement of dopants (Mn, Co) introduced more and more oxygen vacancies to ZnO lattice confirmed from EDX and XPS. The high-temperature annealing leads to reduction of the dielectric properties due to enhancement in grain growth (large grain volume and lesser number of grain boundaries) with the incorporation of Co and Mn ions into the ZnO lattice. The electrical conductivity of the Mn doped and (Mn, Co) co-doped ZnO samples were enhanced due to increase in the volume of conducting grains and charge density (liberation of trapped charge carriers in oxygen vacancies and free charge carriers at higher frequencies). The Mn-doped and (Mn, Co) co-doped ZnO NPs show ferromagnetic (FM) behaviour. The saturation and remnant magnetizations (Ms and Mr) elevates from (0.235 to 1.489) × 10−2 and (0.12 to 0.27) × 10−2 emu/g while Coercivity (Hc) reduced from 97 to 36 Oe with enhancement in the concentration of dopants in ZnO matrix. Oxygen vacancies were found to be the main reason for room-temperature ferromagnetism (RTFM) in the doped and co-doped ZnO NPs. The results show that the enhanced dielectric and magnetic properties of Mn doped and (Mn, Co) co-doped ZnO is strongly correlated with the concentration of oxygen vacancies. The observed enhanced RTFM, dielectric properties and electrical conductivity makes TM doped ZnO nanoparticles suitable for spintronics, microelectronics and optoelectronics based applications.



This work is financially supported by the Higher Education Commission of Pakistan under START-UP RESEARCH GRANT PROGRAM (Grant No: 21-1525/SRGP/R&D/HEC/2017) and (Grant No: 21-1732/SRGP/R&D/HEC/2017), the Fundamental Research Funds for the HEC Pakistan. Also thanks to Higher Education Research Endowment Fund (HEREF 96) KPK i.e., Project Management Unit, Higher Education Department Government of Khyber Pakhtunkhwa for funding.


  1. 1.
    Y.M. Hao, S. Lou, S. Zhou, Y. Wang, X. Chen, G. Zhu, R.N. Yuan, L. Ning, J. Nanopart. Res. 14, 659 (2012)CrossRefGoogle Scholar
  2. 2.
    G.A. Prinz, Science 282, 1660 (1998)CrossRefGoogle Scholar
  3. 3.
    Y. Koseoglu, Supercond. Nov. Magn. 26, 485–489 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Ping, S. Wang, J. Li, Y. Wei, J Lumin. 132, 220–225 (2012)CrossRefGoogle Scholar
  5. 5.
    W. Prellier, A. Fouchet, B. Mercey, J. Phys. Condens. Matter 15, R1583 (2003)CrossRefGoogle Scholar
  6. 6.
    W. Xuetao, Z. Liping, J. Alloys Compd. 509, 3282–3285 (2011)CrossRefGoogle Scholar
  7. 7.
    J.L. Fu, X. Pen, S. Yan, Y. Gong, Y. Tan, R. Liang, R. Du, X. Xing, J. Alloys Compd. 558, 212–221 (2013)CrossRefGoogle Scholar
  8. 8.
    Y.M. Hao, S. Lou, S. Zhou, Y. Wang, X. Chen, G. Zhu, R.N. Yuan, L. Ning, Nanoscale Res. Lett. 7, 100 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Stroppa, X. Duan, M. Peressi, Mater. Sci. Eng. B 25, 217–221 (2006)CrossRefGoogle Scholar
  10. 10.
    Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 83, 4020–4022 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Ohno, D.K. Young, B. Beshoten, F. Matsukura, H. Ohno, D.I. Awschalom, Nature 402, 790 (1999)CrossRefGoogle Scholar
  12. 12.
    Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 75:035322 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Klingshirn, Phys. Status Solidi B 71, 547–556 (1975)CrossRefGoogle Scholar
  14. 14.
    X.Y. Xu, C.B. Cao, J. Magn. Magn. Mater. 321, 2216–2219 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Dietl, Nat. Mater. 9, 965974 (2010)CrossRefGoogle Scholar
  16. 16.
    L.L. Sun, F.W. Yan, H.X. Zhang, J.X. Wang, Y.P. Zeng, G.H. Wang, J.M. Li, Appl. Surf. Sci. 255, 7451–7454 (2009)CrossRefGoogle Scholar
  17. 17.
    G. Husnain, F. Tao, S.D. Yao, Physica B 405, 2340 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Lu, H.S. Hsu, Y. Tzeng, J.C.A. Huang, Appl. Phys. Lett. 94, 152507 (2009)CrossRefGoogle Scholar
  19. 19.
    N.G. Szwacki, J.A. Majewski, T. Dietl, Phys. Rev. B 83, 184417 (2011)CrossRefGoogle Scholar
  20. 20.
    V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715–9725 (2014)CrossRefGoogle Scholar
  21. 21.
    Y.M. Hao, S.Y. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012)CrossRefGoogle Scholar
  22. 22.
    G.K. Ghosh, S. Malkhandi, M.K. Mitra, K.K. Chattopadhyay, J. Ph ys. D 41, 245113 (2008)CrossRefGoogle Scholar
  23. 23.
    P. Lommens, K. Lambert, F. Loncke, D.D. Muynck, T. Balkan, F. Vanhaecke, H. Vrielinck, C. Freddy, H. Zeger, Chem Phys Chem 9(3), 484–491 (2008)CrossRefGoogle Scholar
  24. 24.
    R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, J. Mater. Sci. Mater. Electron. 23, 2673–2679 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Khan, Zulfiqar, Y. Zaman, J. Mater. Sci. Mater. Electron. 27, 4003–4010 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, J. Mater. Sci. Mater. Electron. 27, 7725–7730 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Khan, Zulfiqar, M.U. Rahman, S. Fashu, Z.U. Rehman, J. Mater. Sci. Mater. Electron. 28, 10122–10130 (2017)CrossRefGoogle Scholar
  28. 28.
    M.E. Abrishani, S.M. Hosseini, E. Attaran, A. Kampanay, Phys. Status C 7, 1595–1598 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Fabbiyola, L. JohnKennedy, A.A. Dakhel, M. Bououdina, J. Judith Vijaya, T. Ratnaji, J. Mol. Struct. 1109, 89–96 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Neena, A.H. Shah, K. Deshmukh, H. Ahmad, D.J. Fu, K.K. Kondamareddy, P. Kumar, R.K. Dwivedi, V. Sing, (2016) Eur. Phys. J. D 70, 53CrossRefGoogle Scholar
  31. 31.
    R. Khan, Zulfiqar, S. Fashu, Y. Zaman, J. Mater. Sci. Mater. Electron. 27, 5960–5966 (2016)CrossRefGoogle Scholar
  32. 32.
    X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Adv. Mater. 17, 1661–1665 (2005)CrossRefGoogle Scholar
  33. 33.
    Zulfiqar, Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, J. Mater. Sci. Mater. Electron. 27, 9541–9549 (2016)CrossRefGoogle Scholar
  34. 34.
    Zulfiqar, Y. Yuan, J. Yang, W. Wang, Y. Zhizhen, L. Jianguo, Mater. Sci. Mater. Electron. 27, 12119–12127 (2016)CrossRefGoogle Scholar
  35. 35.
    Zulfiqar, Y. Yuan, J. Yang, W. Wang, Y. Zhizhen, L. Jianguo, Ceram. Int. 42, 17128–17136 (2016)CrossRefGoogle Scholar
  36. 36.
    Zulfiqar, R. Khan, Y. Yuan, Z. Iqbal, J. Yang, W. Wang, Z. Ye, J. Lu, J. Mater. Sci. Mater. Electron. 28, 4625–4636 (2017)CrossRefGoogle Scholar
  37. 37.
    R. Khan, M. Fang, Chin. Phys. B 24, 127803 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Khan, Zulfiqar, M.U. Rahman, Z.U. Rehman, S. Fashu, J. Mater. Sci. Mater. Electron. 27, 10532–10540 (2016)CrossRefGoogle Scholar
  39. 39.
    Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, J. Mater. Sci. Mater. Electron. 27, 12490–12498 (2016)CrossRefGoogle Scholar
  40. 40.
    R. Khan, S. Fashu, Z.U. Rehman, J. Mater. Sci. Mater. Electron. 28, 4333–4339 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Khan, Zulfiqar, S. Fashu, J. Mater. Sci. Mater. Electron. 29, 32–37 (2018)CrossRefGoogle Scholar
  42. 42.
    T. Prodromakis, C. Papavassiliou, Appl. Surf. Sci. 225, 6989–6994 (2009)CrossRefGoogle Scholar
  43. 43.
    A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331‒335 (2013)CrossRefGoogle Scholar
  44. 44.
    J. Hn, Z. Zhu, Appl. Phys. Lett. 89, 031107 (2006)CrossRefGoogle Scholar
  45. 45.
    F. Gu, S.F. Wang, M.K. Lu, G.L. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004)CrossRefGoogle Scholar
  46. 46.
    P.S. Sz, Y.C. Lin, Phys. Chem. Mater. 82, 295–300 (2003)CrossRefGoogle Scholar
  47. 47.
    O. Pakma, N. Serinl, T. Serin, S. Altinda, J. Phys. D 41, 215103 (2008)CrossRefGoogle Scholar
  48. 48.
    R. Elilarassi, G. Chandrasekaran, Optoelectron. Lett 8, 109–112 (2012)CrossRefGoogle Scholar
  49. 49.
    Y. Lin, D. Jiang, F. Lin, W. Shi, M. Xueming, J. Alloys Compd. 436, 30–33 (2007)CrossRefGoogle Scholar
  50. 50.
    Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, J. Alloys Compd. 466, 26–30 (2008)CrossRefGoogle Scholar
  51. 51.
    C. Gao, F.T. Lin, X. Zhou, W. Shi, A. Liu, J. Alloys Compd. 565, 154–158 (2013)CrossRefGoogle Scholar
  52. 52.
    K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Phys. Rev. Lett. 97, 037203–037204 (2006)CrossRefGoogle Scholar
  53. 53.
    S. Yin, Phys. Rev. B 73, 224408–224408 (2015)CrossRefGoogle Scholar
  54. 54.
    T. Fukumura, Appl. Phys. Lett. 78, 958–960 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rajwali Khan
    • 1
    • 6
  • Zulfiqar
    • 1
  • Clodoaldo Irineu Levartoski de Araujo
    • 2
  • Tahirzeb Khan
    • 1
  • Muneeb-Ur-Rahman
    • 3
  • Zia-Ur-Rehman
    • 4
  • Aurangzeb Khan
    • 1
  • Burhan Ullah
    • 5
  • Simbarashe Fashu
    • 7
  1. 1.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan
  2. 2.Laboratory of Spintronics and Nanomagnetism (LabSpiN), Departamento de FísicaUniversidade Federal de Viçosa-UFVViçosaBrazil
  3. 3.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  4. 4.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  5. 5.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  6. 6.Department of PhysicsZhejiang UniversityHangzhouChina
  7. 7.Department of Materials Science and EngineeringHarare Institute of TechnologyHarareZimbabwe

Personalised recommendations