Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)

  • C. Imla Mary
  • M. Senthilkumar
  • S. Moorthy Babu


Wurtzite (Wz) and kesterite (Ks) phases of Cu2ZnSnS4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert-dodecanethiol (t-DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20 ± 3 nm, width 17 ± 2 nm) and sphere shaped NPs (13.4 ± 0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks—t-DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm−3) and carrier concentration (2.64 × 1017) compared to kesterite phase of CZTS films.



The authors sincerely thank Department of Science and Technology (DST-TM/SERI /FR/90 (G)) and University Grants Commission (F.No.42-855/2013) for funding the research work.


  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt. Res. Appl. 19, 84–92 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischman, M. Powalla, Prog. Photovolt. Res. Appl. 19, 894–897 (2011)CrossRefGoogle Scholar
  3. 3.
    M.-H. Jao, H.-C. Liao, M.-C. Wu, W.-F. Su, Jpn. J. Appl. Phys. 51, 10NC30 (2012)CrossRefGoogle Scholar
  4. 4.
    S.W. Shin, J.H. Han, Y.C. Park, G. Agawane, C.H. Jeong, J.H. Yun, A.V. Moholkar, J.Y. Lee, J.H. Kim, J. Mater. Chem. 22, 21727 (2012)CrossRefGoogle Scholar
  5. 5.
    U. Ghorpade, M. Suryawanshi, S.W. Shin, K. Gurav, P. Patil, S. Pawar, C.W. Hang, J.H. Kim, S. Kolekar, Chem. Commun. 50, 11258–11273 (2014)CrossRefGoogle Scholar
  6. 6.
    D. Xia, P. Lei, Y. Zheng, B. Zhou, J. Mater. Sci.: Mater. Electron. 26, 5426–5432 (2015)Google Scholar
  7. 7.
    V.A. Madiraju, K. Taneja, M. Kumar, R. Seelaboyina, J. Mater. Sci.: Mater. Electron. 27, 3152–3157 (2016)Google Scholar
  8. 8.
    S.W. Shin, J.H. Han, Y.C. Park, G.L. Agawane, C.H. Jeong, J.H. Yun, A.V. Moholkar, J.Y. Lee, J.H. Kim, J. Mater. Chem. 22, 21727–21732 (2012)CrossRefGoogle Scholar
  9. 9.
    S.A. Vanalakar, G.L. Agwane, M.G. Gang, P.S. Patil, J.H. Kim, J.Y. Kim, Phys. Status. Solidi C 12, 500–503 (2015)CrossRefGoogle Scholar
  10. 10.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy. Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  11. 11.
    Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 132, 17384–17386 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Aldakov, A. Lefrancois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013)CrossRefGoogle Scholar
  13. 13.
    Q. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem 131, 11672 (2009)CrossRefGoogle Scholar
  14. 14.
    X. Lu, Z. Zhuang, Q. Peng, Y. Li, Chem. Commun. 47, 3141–3143 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Kong, Z.-J. Zhou, M. Li, W.-H. Zhou, S.-J. Yuan, R.-Y. Yao, Y. Zhao, S.-X. Wu, Nanoscale Res. Lett. 8, 464 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Kruszynska, H. Borchert, J. Parisi, J.K. Olesika, J. Am. Chem. Soc. 132, 15976–15986 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Ananthakumar, J. Ramkumar, Y. Hayakawa, S. Moorthy Babu, Jpn. J. Appl. Phys. 54, 08KA10 (2015)CrossRefGoogle Scholar
  18. 18.
    Z. Li, A.L.K. Lui, K.H. Lam, L. Xi, Y.M. Lam, Inorg. Chem. 53, 10874–10880 (2014)CrossRefGoogle Scholar
  19. 19.
    M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, E. Ye, Chem. Eur. J. 18, 3127–3131 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Li, W.-H. Zhou, J. Guo, Y.-L. Zhou, Z.-L. Hou, J. Jiao, Z.-J. Zhou, Z.-L. Du, S.-X. Wu, J. Phys. Chem. C 116, 26507–26516 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Hao, Z. Zhang, S. Liu, Y. Cui, Mater. Lett. 183, 268–271 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Kempken, A. Erdt, J. Parisi, J. Kolny-Olesiak, J. Nanomater. (2015). Google Scholar
  23. 23.
    N.K. Pal, C. Kryschi, Phys. Chem. Chem. Phys. 17, 1957–1965 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Aprile, M.A. Herranz, E. Carbonell, H. Garria, N. Martin, Dalton Trans. (2009). Google Scholar
  25. 25.
    C. Dablemont, P. Lang, C. Mangeney, J.Y. Piquemal, V. Petkov, F. Herbst, G. Viau, Langmuir 24, 5832–5841 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Singh, H. Geaney, F. Laffir, K.M. Ryan, J. Am. Chem. 134, 2910–2913 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Park, H. Jin, J. Park, S. Kim, CrystEngComm 16, 8642–8645 (2014)CrossRefGoogle Scholar
  28. 28.
    C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, J. Am. Chem. Soc. 131, 12554–12555 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Woo, Y. Kim, J. Moon, Energy Environ. Sci. 5, 5340–5345 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Zhi, W. Shurong, L. Zhishan, Y. Min, L. Sijia, L. Yilei, Z. Qichen, H. Ruiting, Mat. Sci. Semin. Proc. 57, 239–243 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Shakban, P.D. Matthews, N. Savjani, X.L. Zhong, Y. Wang, M. Missous, P. O’Brien, J. Mater. Sci. 52, 12761–12771 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Aldalbahi, E.M. Mkawi, K. Ibrahim, M.A. Farrukh, Sci. Rep. 6, 32431 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Imla Mary
    • 1
  • M. Senthilkumar
    • 1
  • S. Moorthy Babu
    • 1
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia

Personalised recommendations