Effect of carbon nanotubes as dispersoid in polymer electrolyte matrix

  • Annubhawi Annu
  • Abhimanyu Singh
  • Pramod K. Singh
  • B. Bhattacharya


The present work deals with the characterization of a thin film polymer electrolyte based on poly(N-vinyl pyrrolidone) (PVP) doped with ammonium iodide (NH4I) and carbon nanotubes (CNT) as dispersoid to develop nanocomposite polymer electrolyte films using solution cast method. Carbon nanotubes were incorporated in PVP:NH4I matrix in different concentration. Electrochemical impedance spectroscopy technique was used for characterizing the polymer electrolyte system. 0.4 wt% MCNT containing system shows maximum conductivity (8.23 × 10−2 S/cm). The temperature dependent conductivity studies reveal the Arrhenius behavior. Differential scanning calorimetry analysis shows the decrease in the glass transition temperature (Tg) from 345 (60:40 PVP:NH4I) to 339 K (60:40 + 0.4 wt% PVP:NH4I + CNT). Dielectric phenomenon, concentration of charge carrier density (N) and dissociation factor also supports the conductivity data while ionic transference number (tion) studies confirms the ionic conductive nature of the electrolyte system.


  1. 1.
    D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973)CrossRefGoogle Scholar
  2. 2.
    K.N. Kumar, T. Sreekanth, M.J. Reddy, U.V.S. Rao, J. Power Sources 101, 130–133 (2001)CrossRefGoogle Scholar
  3. 3.
    T.M.W.J. Winjendra, P. Ekanayake, M.A.K.L. Dissanayake, I. Albinsson, B.E. Mellander, J. Solid State Electrochem. 14, 1221–1226 (2010)CrossRefGoogle Scholar
  4. 4.
    R. Chandrasekaran, S. Selladurai, J. Solid State Electrochem. 5, 355–361 (2001)CrossRefGoogle Scholar
  5. 5.
    X. Li, D. Zhang, X.J. Yin, S. Chen, J. Shi, Z. Sun, S. Huang, J. Solid State Electrochem. 15, 1271–1277 (2011)CrossRefGoogle Scholar
  6. 6.
    B. O’Regan, M. Gratzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  7. 7.
    P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  8. 8.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, Weinheim, 2004)Google Scholar
  9. 9.
    K. Awasthi, T.P. Yadav, P.R. Mishra, S. Awasthi, O.N. Srivastava, Bull. Mater. Sci. 31, 313–318 (2008)CrossRefGoogle Scholar
  10. 10.
    D. Zhou, X. Mei, J. Ouyang, J. Phys. Chem. C 115 (2011), 16688–16694CrossRefGoogle Scholar
  11. 11.
    C.S. Wu, Polym. Int. 60, 807–815 (2011)CrossRefGoogle Scholar
  12. 12.
    V.K. Singh, B. Bhattacharya, S. P.K. Singh, Mater. Tehnol. 49, 123–127 (2015)Google Scholar
  13. 13.
    H. Saxena, B. Bhattacharya, N.A. Jadhav, V.K. Singh, S. Shukla, M. Dubey, P.K. Singh, J. Exp. Nanosci. 9, 444–451 (2014)CrossRefGoogle Scholar
  14. 14.
    P.K. Singh, K.W. Kim, K.I. Kim, N.G. Park, H.W. Rhee., J. Nanosci. Nanotechnol. 8, 5271–5274 (2008)CrossRefGoogle Scholar
  15. 15.
    K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe, S. Yanagida, Comptes Rendus Chim. 9, 611–616 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Kumar, T. Tiwari, N. Srivastava, Carbohydr. Polym. 88, 54–60 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Saxena, P.K. Singh, B. Bhattachary, Mater. Tehnol. 47, 799–802 (2013)Google Scholar
  18. 18.
    A.K. Arof, S. Amiirudin, S.Z. Yusof, I.M. Noor, Phys. Chem. Chem. Phys. 16, 1856–1867 (2014)CrossRefGoogle Scholar
  19. 19.
    P.K. Singh, A. Chandra, Natl Acad. Sci. Lett. India 25, 286–293 (2002)Google Scholar
  20. 20.
    R. Singh, J. Baghel, S. Shukla, B. Bhattacharya, H.W. Rhee, P.K. Singh, Phase Transit. 87, 1237–1245 (2014)CrossRefGoogle Scholar
  21. 21.
    E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Nanoscale Res. Lett. 9, 247–255 (2014)CrossRefGoogle Scholar
  22. 22.
    D.C. Tiwari, P. Dipak, S.K. Dwivedi et al., J. Mater. Sci.: Mater. Electron. 29, 1643–1650 (2018)Google Scholar
  23. 23.
    H. Zhou, J. Mater. Sci.: Mater. Electron. (2018). Google Scholar
  24. 24.
    V. Khandelwal, S.K. Sahoo, A. Kumar et al., J. Mater. Sci.: Mater. Electron. 28, 14240–14251 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Annubhawi Annu
    • 1
  • Abhimanyu Singh
    • 1
  • Pramod K. Singh
    • 1
  • B. Bhattacharya
    • 1
    • 2
  1. 1.Material Research Laboratory, Department of Physics, School of Basic Sciences and ResearchSharda UniversityGreater NoidaIndia
  2. 2.M M V, Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations