Strong mechanics and broadened microwave absorption of graphene-based sandwich structures and surface-patterned structures

  • Xi-Xi Wang
  • Chao-Ming Sun
  • Fu-Bao Wen
  • Si-Yu Jiang
  • Mao-Sheng Cao


Since practical microwave absorption materials and structures are highly pursued in broad industry, traditional hybrid materials generally suffer from poor mechanical strength and narrow effective microwave absorption bandwidth. In this work, we utilized a graphene-based fabric as the effective microwave absorption layer, followed by sandwiching into glass fiber and carbon fiber cloths, to fabricate practical composite structures. For further extending the effective absorption bandwidth, surface-patterned structures were employed to promote the microwave absorption performance in X and Ku bands. The fabricated sandwich structure and SA exhibit > 90% absorption in 9.8–18 and 8–18 GHz, respectively. With the presence of epoxy matrices, both the mechanical strength polymeric sandwich and surface-patterned structures hold high efficiency in broadband absorption. For understanding the effects of the material and structure effect on the performance, various surface conditions were tuned to tailor the performance, and the corresponding mechanism was discussed.



Financial support from NSF of China (51302011) is gratefully acknowledged.

Supplementary material

10854_2018_9005_MOESM1_ESM.docx (192 kb)
Supplementary material: Effect of rGO on the dielectric properties and absorbing properties, dielectric properties of GF. (DOCX 191 KB)


  1. 1.
    P.C. Watts, W.K. Hsu, A. Barnes, B. Chambers, Adv. Mater. 15, 600 (2003)CrossRefGoogle Scholar
  2. 2.
    R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Adv. Mater. 16, 401 (2004)CrossRefGoogle Scholar
  3. 3.
    B. Shen, W.T. Zhai, W.G. Zheng, Adv. Funct. Mater. 24, 4542 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 26, 8120 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Wen, M.S. Cao, M.M. Lu, W. Cao, H. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, Adv. Mater. 26, 3484 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27, 2049 (2015)CrossRefGoogle Scholar
  7. 7.
    Z.F. Liu, G. Bai, Y. Huang, F.F. Li, Y.F. Ma, T.Y. Guo, X.B. He, X. Liu, H.J. Gao, Y.S. Chen, J. Phys. Chem. C 111, 13696 (2007)CrossRefGoogle Scholar
  8. 8.
    F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Carbon 50, 1972 (2012)CrossRefGoogle Scholar
  9. 9.
    D. Micheli, R.B. Morles, M. Marchetti, F. Moglie, V.M. Primiani, Carbon 68, 149 (2014)CrossRefGoogle Scholar
  10. 10.
    Q. Qi, Y. Huang, M. Xu, X. Lei, X. Liu, J. Mater. Sci. 28, 15043 (2017)Google Scholar
  11. 11.
    L. Yu, Y. Zhu, Y. Fu, J. Mater. Sci. 28, 17202 (2017)Google Scholar
  12. 12.
    W. Li, T.L. Wu, W. Wang, P.C. Zhai, J.G. Guan, J. Appl. Phys. 116, 044110 (2014)CrossRefGoogle Scholar
  13. 13.
    Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L. Cheng, L.T. Zhang, Mater. Des. 123, 46 (2017)CrossRefGoogle Scholar
  14. 14.
    W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, H.F. Ju, Carbon 77, 130 (2014)CrossRefGoogle Scholar
  15. 15.
    Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Nanoscale 6, 12298 (2014)CrossRefGoogle Scholar
  16. 16.
    W.L. Song, Z.L. Zhou, L.C. Wang, X.D. Cheng, M.J. Chen, R.J. He, H.S. Chen, Y.Z. Yang, D.N. Fang, ACS Appl. Mater. Interfaces (2017). Google Scholar
  17. 17.
    T.T. Chen, F. Deng, J. Zhu, C.F. Chen, G.B. Sun, S.L. Ma, X.J. Yang, J. Mater. Chem. 22, 15190 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Fu, Q. Jiao, Y. Zhao, J. Mater. Chem. A 1, 5577 (2013)CrossRefGoogle Scholar
  19. 19.
    W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, Y.P. Sun, Angew. Chem. Int. Ed. 51, 6498 (2012)CrossRefGoogle Scholar
  20. 20.
    M.J. Meziani, W.L. Song, P. Wang, F.S. Lu, Z.L. Hou, A. Anderson, H. Maimaiti, Y.P. Sun, ChemPhysChem 16, 1339 (2015)CrossRefGoogle Scholar
  21. 21.
    W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, M.S. Cao, Carbon 100, 109 (2016)CrossRefGoogle Scholar
  22. 22.
    V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Carbon 50, 2202 (2012)CrossRefGoogle Scholar
  23. 23.
    X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, ACS Appl. Mater. Interfaces 6, 7471 (2014)CrossRefGoogle Scholar
  24. 24.
    W.L. Song, L.Z. Fan, Z.L. Hou, K.L. Zhang, Y.B. Ma, M.S. Cao, J. Mater. Chem. C 5, 2432 (2017)CrossRefGoogle Scholar
  25. 25.
    P.Y. Liu, L.M. Wang, B. Cao, L.C. Li, K.L. Zhang, X.M. Bian, Z.L. Hou, J. Mater. Chem. C 5, 6745 (2017)CrossRefGoogle Scholar
  26. 26.
    W.S.J. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  27. 27.
    L.L. Zhang, X.X. Yu, H.R. Hu, Y. Li, M.Z. Wu, Z.Z. Wang, G. Li, Z.Q. Sun, C.L. Chen, Sci. Rep. 5, 9298 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Sun, Q. Zou, G. Qian, C. Sun, W. Jiang, F. Li, Acta Mater. 61, 5829 (2013)CrossRefGoogle Scholar
  29. 29.
    X. Sun, J.P. He, G.X. Li, J. Tang, T. Wang, Y.X. Guo, H.R. Xue, J. Mater. Chem. C 1, 765 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, Compos. Sci. Technol. 108, 1 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Pan, J. Zhu, S. Ma, G. Sun, X. Yang, ACS Appl. Mater. Interfaces 5, 12716 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Wu, Y. Xia, Y. Wang, M. Wang, J. Mater. Chem. A 2, 20307 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Composite Materials Co., Ltd.BeijingChina
  2. 2.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations