Determining the sub-surface damage of CdTe single crystals after lapping

  • O. ŠikEmail author
  • L. Škvarenina
  • O. Caha
  • P. Moravec
  • P. Škarvada
  • E. Belas
  • L. Grmela


We introduce an affordable and easy-to-implement method of determining the thickness of a mechanically damaged layer on the surface of a cadmium telluride single crystal after mechanical lapping. This method is based on This method is based on different usage of already known defect-revealing etchants: the side projection of the lapped surface. A comparison of developed etch pit patterns in the vicinity of the lapped side etched by the Everson solution, Nakagawa solution, Hähnert and Schenk solution, Saucedo solution, Inoue E-Ag II solution and FeCl3 is provided. The most commonly used defect-revealing etchants the Nakagawa and Everson solutions—did not show any trend of etch pit formation towards a mechanically damaged surface. On the other hand, the Saucedo, FeCl3 and E-Ag II etches were successful and achieved similar results. These etchants revealed three distinctive regions of sub-surface damage: (i) a severely polycrystalline 50 µm deep damaged region with micro cracks. This region was best revealed by the FeCl3 etch. (ii) A region of plastic deformations that is 180 µm deep. This region was best revealed by the E-Ag etch. (iii) A region free from mechanical damage. High-resolution X-ray diffraction (HRXRD) further confirmed the results obtained by chemical methods. Full-width at half maximum of the rocking curves decreased from the value of 1000 arcsec on the lapped surface to the value lower than 30 arcsec after the removal of 200 µm of the surface. From HRXRD analysis, the region (i) can be further divided into an approx. 10 µm thin nearly amorphous region, followed by a microcrystalline region. The region (ii) showed mosaic structure consisted of large crystallic blocks, with low angle misorientation from the main diffraction peak. The results showed that the thickness of the mechanically damaged layer is ten times higher than the size of the abrasive used.



The research described in the paper was financially supported by the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic under the project CEITEC 2020 (MEYS Grant No. LQ1601), CEITEC Nano Research Infrastructure (MEYS Grant No. LM2015041), by the Grant Agency of the Czech Republic under No. GACR 15-05259S and by the National Sustainability Program under grant MEYS LO1401. For the research, infrastructure of the SIX Center was used. The research has been also supported by the Internal Grant Agency of Brno University of Technology, Grant No. FEKT-S-17-4626.


  1. 1.
    S.M. Tawfik, J. Shim, D. Biechele-Speziale, M. Sharipov, Y.I. Lee, Novel ‘turn off-on’ sensors for highly selective and sensitive detection of spermine based on heparin-quenching of fluorescence CdTe quantum dots-coated amphiphilic thiophene copolymers. Sens. Actuators B 257, 734–744 (2018)CrossRefGoogle Scholar
  2. 2.
    Ł Rodzik-Czałka et al., Nucleobases functionalized quantum dots and gold nanoparticles bioconjugates as a fluorescence resonance energy transfer (FRET) system—synthesis, characterization and potential applications. J. Colloid Interface Sci. 514, 479–490 (2018)CrossRefGoogle Scholar
  3. 3.
    A.M. Jimenez, Jimenez et al., Dual-color quantum dots-based simultaneous detection of HPV-HIV co-infection. Sens. Actuators B 258, 295–303 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Anas et al., Engineered hetero structured arrays of ZnO NanoX (X = discs, rods and wires) and CdTe quantum dots for advanced electron transport applications. Mater. Des. 141, 267–275 (2018)CrossRefGoogle Scholar
  5. 5.
    M.A. Baghchesara, R. Yousefi, M. Cheraghizade, F. Jamali-Sheini, A. Sa’Aedi, Photocurrent application of Cd-doped ZnTe nanowires grown in a large scale by a CVD method. Vacuum 123, 131–135 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Yousefi, H.R. Azimi, M.R. Mahmoudian, M. Cheraghizade, Highly enhanced photocatalytic performance of Zn(1−x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method. Adv. Powder Technol. 29(1), 78–85 (2018)CrossRefGoogle Scholar
  8. 8.
    M.A. Baghchesara, M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, Photovoltaic and photodetector performance of metal telluride nanowires grown by a simple CVD method. J. Mater. Sci. Mater. Electron. 28(5), 4475–4480 (2017)CrossRefGoogle Scholar
  9. 9.
    A.H. Munshi et al., Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection. Sol. Energy Mater. Sol. Cells 176, 9–18 (2018)CrossRefGoogle Scholar
  10. 10.
    T. Parodos et al., Effect of dislocations on VLWIR HgCdTe photodiodes. J. Electron. Mater. 36(8), 1068–1076 (2007)CrossRefGoogle Scholar
  11. 11.
    P. Capper, Progress in bulk cadmium mercury telluride over the last 25 years. J. Mater. Sci. Mater. Electron. 26(7), 4380–4388 (2015)CrossRefGoogle Scholar
  12. 12.
    S.V. Morozov et al., Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 µm. Appl. Phys. Lett., 111(19), 192101 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Kopytko, Theoretical performance of mid wavelength HgCdTe(1 0 0) heterostructure infrared detectors. Solid State Electron. 137, 102–108 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Cervera et al., Ultra-low dark current HgCdTe detector in SWIR for space applications. J. Electron. Mater. 46(10), 6142–6149 (2017)CrossRefGoogle Scholar
  15. 15.
    W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, H.F. Schaake, Etch pit characterization of CdTe and CdZnTe substrates for use in mercury cadmium telluride epitaxy. J. Electron. Mater. 24(5), 505–510 (1995)CrossRefGoogle Scholar
  16. 16.
    U. Gilabert, E. Heredia, A.B. Trigubó, ISOVPE MCT films grown on pure and alloyed CdTe substrates with different crystalline orientations. J. Cryst. Growth 295(1), 1–6 (2006)CrossRefGoogle Scholar
  17. 17.
    M.C. Di Stefano, E. Heredia, U. Gilabert, A.B. Trigubó, Properties of Hg1−xCdxTe epitaxial films grown on (211)CdTe and (211)CdZnTe. Cryst. Res. Technol. 39(10), 881–885 (2004)CrossRefGoogle Scholar
  18. 18.
    X. Gao et al., PVT growth of exfoliated CdZnTe polycrystalline thick films based on stress mismatch mechanism. J. Mater. Sci. Mater. Electron. 28(16), 12253–12258 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Schütt, A. Vogt, K. Frei, F. Fischer, M. Fiederle, Investigation of MBE grown polycrystalline CdTe films on the Medipix readout chip. J. Cryst. Growth 468, 230–234 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Shen et al., The investigation of Ga-doped ZnO as an interlayer for ohmic contact to Cd1–xZnxTe films. Appl. Surf. Sci. 425, 176–179 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.V. Znamenshchykov et al., Electrical, structural and optical properties of Cd1−xZnxTe thick polycrystalline films. Vacuum 149, 270–278 (2018)CrossRefGoogle Scholar
  22. 22.
    T. Alharbi, Energy resolution improvement of CdTe detectors by using the principal component analysis technique. Nucl. Instrum. Methods Phys. Res. Sect. A 882, 114–116 (2018)CrossRefGoogle Scholar
  23. 23.
    B. Zhou et al., Growth and characterization of detector-grade Cd0.9Zn0.1Te crystals by the traveling heater method with the accelerated crucible rotation technique. J. Electron. Mater. 47(2), 1125–1130 (2018)CrossRefGoogle Scholar
  24. 24.
    S.U. Egarievwe et al., Carbon Coating and defects in CdZnTe and CdMnTe nuclear detectors. IEEE Trans. Nucl. Sci. 63(1), 236–245 (2016)CrossRefGoogle Scholar
  25. 25.
    P. Yu et al., Investigation of effective annealing on CdMnTe:In crystals with different thickness for gamma-ray detectors. J. Cryst. Growth 483, 94–101 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Jia et al., Investigation of dislocation migration in substrate-grade CdZnTe crystals during post-annealing. J. Cryst. Growth 457, 343–348 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Xi et al., Studies on Cr electrode of CdZnTe detector for high energy radiation detection. J. Mater. Sci. Mater. Electron. 29, 5049–5056 (2018)CrossRefGoogle Scholar
  28. 28.
    V.M. Sklyarchuk, V.A. Gnatyuk, W. Pecharapa, Low leakage current Ni/CdZnTe/In diodes for X/γ-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 879, 101–105 (2018)CrossRefGoogle Scholar
  29. 29.
    U.N. Roy et al., Assessment of a new ZnO:Al contact to CdZnTe for X- and gamma-ray detector applications. AIP Adv. 7(9), 095216 (2017)CrossRefGoogle Scholar
  30. 30.
    U.N. Roy et al., Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors. Sci. Rep. 6, 26384 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Tang et al., Cd1−xZnxTe photodetectors with transparent conductive ZnO contacts. Appl. Surf. Sci. 433, 177–180 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Zázvorka, J. Franc, L. Beran, P. Moravec, J. Pekárek, M. Veis, Dynamics of native oxide growth on CdTe and CdZnTe X-ray and gamma-ray detectors. Sci. Technol. Adv. Mater. 17(1), 792–798 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Zázvorka et al., Optical and electrical study of CdZnTe surfaces passivated by KOH and NH4F solutions. Appl. Surf. Sci. 389, 1214–1219 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Pekarek, E. Belas, J. Zazvorka, Long-term stable surface treatments on CdTe and CdZnTe radiation detectors. J. Electron. Mater. 46(4), 1996–2002 (2017)CrossRefGoogle Scholar
  35. 35.
    X. Fu et al., Indentation-introduced dislocation rosettes and their effects on the carrier transport properties of CdZnTe crystal. CrystEngComm 18(30), 5667–5673 (2016)CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, H. Gao, W. Jie, D. Guo, R. Kang, Y. Li, Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals. Semicond. Sci. Technol. 23(10), 105023 (2008)CrossRefGoogle Scholar
  37. 37.
    C. Xiao, J. Guo, P. Zhang, C. Chen, L. Chen, L. Qian, Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon. Sci. Rep. 7, 40750 (2017)CrossRefGoogle Scholar
  38. 38.
    Z. Zhang, B. Wang, P. Zhou, R. Kang, B. Zhang, D. Guo, A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci. Rep. 6:26891-1–26891-7, 2016Google Scholar
  39. 39.
    R. Singh et al., Molecular beam epitaxy growth of high-quality HgCdTe LWIR layers on polished and repolished CdZnTe substrates. J. Electron. Mater. 34(6), 885–890 (2005)CrossRefGoogle Scholar
  40. 40.
    P. Moravec et al., Chemical polishing of CdZnTe substrates fabricated from crystals grown by the vertical-gradient freezing method. J. Electron. Mater. 35(6), 1206–1213 (2006)CrossRefGoogle Scholar
  41. 41.
    Z. Zhang, Y. Meng, D. Guo, R. Kang, H. Gao, Nanoscale machinability and subsurface damage machined by CMP of soft-brittle CdZnTe crystals. Int. J. Adv. Manuf. Technol. 47(9–12), 1105–1112 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Nouruzi-Khorasani, M.A. Lunn, I.P. Jones, P.S. Dobson, D.J. Williams, M.G. Astles, Surface damage of CdTe by mechanical polishing investigated by cross-sectional TEM. J. Cryst. Growth 102(4), 1069–1073 (1990)CrossRefGoogle Scholar
  43. 43.
    I. Hähnert, M. Wienecke, Relation between dislocation density, bulk electrical properties and ohmic contacts of CdTe. Mater. Sci. Eng. B 16(1–3), 168–171 (1993)CrossRefGoogle Scholar
  44. 44.
    D.F. Weirauch, A study of lapping and polishing damage in single-crystal CdTe. J. Electrochem. Soc. 132(1), 250–254 (1985)CrossRefGoogle Scholar
  45. 45.
    A. Hossain, A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. Yang, R.B. James, Defects in cadmium zinc telluride crystals revealed by etch-pit distributions. J. Cryst. Growth 310(21), 4493–4498 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Shen et al., Investigation on the surface treatments of CdMnTe single crystals. Mater. Sci. Semicond. Process. 31, 536–542 (2015)CrossRefGoogle Scholar
  47. 47.
    E. Saucedo, P. Rudolph, E. Dieguez, Modified Bridgman growth of CdTe crystals. J. Cryst. Growth 310(7–9), 2067–2071 (2008)CrossRefGoogle Scholar
  48. 48.
    J. Zhang, W. Jie, L. Luan, T. Wang, D. Zeng, Evaluation of Mn uniformity in CdMnTe crystal grown by the vertical Bridgman method. J. Electron. Mater. 37(8), 1158–1162 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Xu, N. Jia, Y. He, R. Guo, Y. Gu, W. Jie, Interplay mechanism between secondary phase particles and extended dislocations in CdZnTe crystals. CrystEngComm 17(45), 8639–8644 (2015)CrossRefGoogle Scholar
  50. 50.
    C. Buis, G. Marrakchi, T.A. Lafford, A. Brambilla, L. Verger, E. Gros, D’Aillon, Effects of dislocation walls on image quality when using cadmium telluride X-ray detectors. IEEE Trans. Nucl. Sci. 60(1), 199–203 (2013)CrossRefGoogle Scholar
  51. 51.
    H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, R. Ohno, THM growth and characterization of 100 mm diameter CdTe single crystals. IEEE Trans. Nucl. Sci. 56(4), 1717–1723 (2009)CrossRefGoogle Scholar
  52. 52.
    D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(1), 181–188 (2012)Google Scholar
  53. 53.
    K. Nakagawa, K. Maeda, S. Takeuchi, Observation of dislocations in cadmium telluride by cathodoluminescence microscopy. Appl. Phys. Lett. 34(9), 574–575 (1979)CrossRefGoogle Scholar
  54. 54.
    R. Triboulet, P. Siffert, CdTe and Related Compounds: Physics, Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications (Elsevier, Amsterdam, 2010)Google Scholar
  55. 55.
    X. Fu, Y. Xu, L. Xu, Y. Gu, N. Jia, W. Jie, Study on the local stress induced dislocations on (\(\bar {1}\bar {1}\bar {1}\)) Te face of CdTe-based crystals. J. Cryst. Growth 478, 71–76 (2017)CrossRefGoogle Scholar
  56. 56.
    I. Hähnert, M. Schenk, New defect etchants for CdTe and Hg1−xCdxTe. J. Cryst. Growth 101(1–4), 251–255 (1990)CrossRefGoogle Scholar
  57. 57.
    P. Capper, Properties of Narrow-Gap Cadmium-Based Compounds (IEE INSPEC, London, 1995)Google Scholar
  58. 58.
    C.C.R. Watson, K. Durose, A.J. Banister, E. O’Keefe, S.K. Bains, Qualification of a new defect revealing etch for CdTe using cathodoluminescence microscopy. Mater. Sci. Eng. B 16(1–3), 113–117 (1993)CrossRefGoogle Scholar
  59. 59.
    U.N. Roy et al., Growth and characterization of CdMnTe by the vertical Bridgman technique. J. Cryst. Growth 437, 53–58 (2016)CrossRefGoogle Scholar
  60. 60.
    S. Uba, S. Babalola, A. Hossain, R. James, Characterization of extended defects observed in cadmium zinc telluride (CZT) crystal. MRS Proceedings, vol. 1792 (2015), p. mrss15-2134263,Google Scholar
  61. 61.
    A. Hossain et al., Vanadium-doped cadmium manganese telluride (Cd1−xMnxTe) crystals as X- and gamma-ray detectors. J. Electron. Mater. 38(8), 1593–1599 (2009)CrossRefGoogle Scholar
  62. 62.
    M. Inoue, I. Teramoto, S. Takayanagi, Etch pits and polarity in CdTe crystals. J. Appl. Phys. 33(8), 2578–2582 (1962)CrossRefGoogle Scholar
  63. 63.
    M. Inoue, I. Teramoto, S. Takayanagi, Cd and Te dislocations in CdTe. J. Appl. Phys. 34(2), 404–405 (1963)CrossRefGoogle Scholar
  64. 64.
    Y.-C. Lu. R.K. Route, D. Elwell, R.S. Feigelson, Etch pit studies in CdTe crystals. J. Vac. Sci. Technol. A 3(1), 264–270 (1985)CrossRefGoogle Scholar
  65. 65.
    P. Yu, W. Jie, T. Wang, Improvement of the quality of indium-doped CdZnTe single crystals by post-growth annealing for radiation detectors. CrystEngComm 13(10), 3521–3525 (2011)CrossRefGoogle Scholar
  66. 66.
    K. Chattopadhyay et al., Surface passivation of cadmium zinc telluride radiation detectors by potassium hydroxide solution. J. Electron. Mater. 29(6), 708–712 (2000)CrossRefGoogle Scholar
  67. 67.
    F.F. Sheng, X.P. Cui, S.W. Sun, J.R. Yang, Etch pits of precipitates in CdZnTe crystals on (1 1 1) B surface. J. Cryst. Growth 354(1), 76–80 (2012)CrossRefGoogle Scholar
  68. 68.
    U.N. Roy et al., Evaluation of CdTexSe1−x crystals grown from a Te-rich solution. J. Cryst. Growth 389, 99–102 (2014)CrossRefGoogle Scholar
  69. 69.
    V.N. Babentsov, Dislocation emission caused by different types of nanoscale deformation defects in CdTe. Semicond. Phys. Quantum Electron. Optoelectron. 17(1), 29–33 (2014)CrossRefGoogle Scholar
  70. 70.
    K. Olender, T. Wosinski, A. Makosa, S. Kret, V. Kolkovsky, G. Karczewski, Capture kinetics at deep-level defects in MBE-grown CdTe layers. Semicond. Sci. Technol. 26(4), 45008 (2011)CrossRefGoogle Scholar
  71. 71.
    K. Yasuda et al., Characterization of (211) and (100) CdTe layers grown on Si substrates by metalorganic vapor-phase epitaxy. J. Electron. Mater. 46(11), 6704–6708 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic
  2. 2.CEITEC - Central European Institute of Technology, Brno University of TechnologyBrnoCzech Republic
  3. 3.CEITEC - Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
  4. 4.Department of Condensed Matter Physics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  5. 5.Institute of Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations