Gamma radiation induced nickel oxide/reduced graphene oxide nanoflowers for improved dye-sensitized solar cells
- 25 Downloads
Abstract
Gamma radiation (γ) exposure was used in dye-sensitised solar cell application to improve the power conversion efficiency. Nickel oxide/reduced graphene oxide (NiO/rGO) as the photoanode layer was prepared by chemical bath deposition method. The NiO/rGO samples were used as the control to analyse the NiO/rGO exposed to γ (NiO/rGO-γ). XRD, FESEM and UV–Vis measurement were conducted to study the structure, morphology and the optical analysis of the samples. NiO/rGO-γ nanoflowers were observed through FESEM images with improved morphology. The porosity of the thin films was also increased after the exposure of γ radiation. The increased energy band gap of NiO/rGO-γ annealed at 400 °C exhibited higher power conversion efficiency of 1.03% with J sc , V oc anf FF of 29 mA/cm2, 0.15 and 0.3 V, respectively.
Notes
Acknowledgements
This work was supported by Exploratory Research Grants Scheme (ERGS/1/2013/TK07/UKM/03/2) and Photonic Technology Laboratory, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
References
- 1.S.R. Messenger, E.A. Burke, G.P. Summers, M.A. Xapsos, R.J. Walters, E.M. Jackson, B.D. Weaver, IEEE Trans. Nucl. Sci. 46, 1595 (1999)CrossRefGoogle Scholar
- 2.W. Rong, G. Zengliang, Z. Xinghui, Z. Zuoxu, Sol. Energy Mater. Sol. Cells 77, 351 (2003)CrossRefGoogle Scholar
- 3.O. Tuzun, S. Altindal, S. Oktik, Renew. Energy 33, 286 (2008)CrossRefGoogle Scholar
- 4.K. Ali, S.A. Khan, M.Z. MatJafri, Int. J. Electrochem. Sci. 8, 7831 (2013)Google Scholar
- 5.G.P. Summers, E. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, IEEE Trans. Nucl. Sci. 40, 1372 (1993)CrossRefGoogle Scholar
- 6.H. Abdullah, S. Mahalingam, M. Ahmad, I. Asshaari, N. Amin, I. Yahya, B. Yuliarto, Malaysian J. Catal. 3, 25 (2018)Google Scholar
- 7.H. Abdullah, N.H. Yunos, S. Mahalingam, M. Ahmad, B. Yuliarto, Procedia Eng. (2017). https://doi.org/10.1016/j.proeng.2017.03.001 Google Scholar
- 8.S. Mahalingam, H. Abdullah, A. Omar, N.A. Nawi, S. Shaari, A. Muchtar, I. Asshari, Adv. Mater. Res. 1107, 649 (2015)CrossRefGoogle Scholar
- 9.A. Yella, A.H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science (2011). https://doi.org/10.1126/science.1209688 Google Scholar
- 10.D.M. Tobnaghi, A. Rahnamaei, M. Vajdi, Int. J. Electrochem. Sci. 9, 2824 (2014)Google Scholar
- 11.D. Nikolić, K. Stanković, L. Timotijević, Z. Rajović, M. Vujisić, Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/843174 Google Scholar
- 12.H. Zhu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 111, 17455 (2007)CrossRefGoogle Scholar
- 13.N. Andrew, F. Michael, K. Robert, C. Yi-Bing, B. Udo, Nanotechnology 19, 295304 (2008)CrossRefGoogle Scholar
- 14.Y. Jiang, M. Li, R. Ding, D. Song, M. Trevor, Z. Chen, Mater. Lett. 107, 210 (2013)CrossRefGoogle Scholar
- 15.H. Abdullah, S. Mahalingam, A. Omar, M.Z. Razali, A. Bolhan, S. Shaari, Mater. Sci. Forum 846, 298 (2016)CrossRefGoogle Scholar
- 16.H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, Y. Wang, W. Zhang, C.M. Li, J. Phys. Chem. C 115, 12209 (2011)CrossRefGoogle Scholar
- 17.S. Das, P. Sudhagar, Y.S. Kang, W. Choi, J. Mater. Res. 29, 299 (2014)CrossRefGoogle Scholar
- 18.H. Abdullah, N.A. Atiqah, A. Omar, I. Asshaari, S. Mahalingam, Z. Razali, S. Shaari, J.S. Mandeep, H. Misran, J. Mater. Sci.: Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-2679-y Google Scholar
- 19.L.F. Dumée, C. Feng, L. He, Z. Yi, F. She, Z. Peng, W. Gao, C. Banos, J.B. Davies, C. Huynh, S. Hawkins, Carbon 70, 313 (2014)CrossRefGoogle Scholar
- 20.A. Ansón-Casaos, J.A. Puértolas, F.J. Pascual, J. Hernández-Ferrer, P. Castell, A.M. Benito, W.K. Maser, M.T. Martinez, Appl. Surf. Sci. 301, 264 (2014)CrossRefGoogle Scholar
- 21.M. Liu, X. Tang, Y. Liu, Z. Xu, H. Wang, M. Fang, D. Chen, J. Radioanal. Nucl. Chem. 308, 631 (2016)CrossRefGoogle Scholar
- 22.S. Bucak, D. Rende, Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the NanoWorld (CRC Press, New York, 2013), pp. 78–80Google Scholar
- 23.S. Mahalingam, H. Abdullah, A. Manap, Electrochim. Acta 264, 275 (2018)CrossRefGoogle Scholar
- 24.S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, I. Asshari, Sci. World J. (2015). https://doi.org/10.1155/2015/403848 Google Scholar
- 25.C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 90, 263501 (2007)CrossRefGoogle Scholar
- 26.S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, Ionics 22, 1985 (2016)CrossRefGoogle Scholar
- 27.S. Mahalingam, H. Abdullah, I. Ashaari, S. Shaari, A. Muchtar, J. Phys. D (2016). https://doi.org/10.1088/0022-3727/49/7/075601 Google Scholar
- 28.S. Mahalingam, H. Abdullah, Renew. Sustain. Energy Rev. 63, 245 (2016)CrossRefGoogle Scholar
- 29.A. Hamadanian, M. Gravand, V. Farangi, Jabbari, in Proceedings of the 5th Symposiumon Advances in Science and Technology, Mashad, Iran, 2011Google Scholar
- 30.Y. Huang, D. Li, J. Feng, G. Li, Q. Zhang, J. Sol-Gel Sci. Technol. (2010). https://doi.org/10.1007/s10971-010-2182-0 Google Scholar
- 31.E. Jamal, D. Kumar, M.R. Anantharaman, Bull. Mater. Sci. 34, 251 (2011)CrossRefGoogle Scholar
- 32.P.S. Patil, L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002)CrossRefGoogle Scholar
- 33.F.A. Moustafa, A.M. Fayad, F.M. Ezz-Eldin, I. El-Kashif, J. Non-Cryst. Solids 376, 18 (2013)CrossRefGoogle Scholar
- 34.V.S. Senthil Srinivasan, M.K. Patra, V.S. Choudhary, A. Pandya, J. Optoelectron. Adv. Mater. 9, 3725 (2007)Google Scholar
- 35.R.Y. Zhu, Nucl. Instrum. Methods Phys. Res. A 413, 297 (1998)CrossRefGoogle Scholar
- 36.K. Eguchi, H. Koga, K. Sekizawa, K. Sasaki, J. Ceram. Soc. Jpn. 108, 1087 (2000)CrossRefGoogle Scholar
- 37.K. Tvrdy, P.A. Frantsuzov, P.V. Kamat, Proc. Natl. Acad. Sci. USA 108, 29 (2011)CrossRefGoogle Scholar