Gamma radiation induced nickel oxide/reduced graphene oxide nanoflowers for improved dye-sensitized solar cells

  • H. Abdullah
  • S. Y. Lye
  • S. Mahalingam
  • I. Asshari
  • B. Yuliarto
  • A. Manap
Article
  • 25 Downloads

Abstract

Gamma radiation (γ) exposure was used in dye-sensitised solar cell application to improve the power conversion efficiency. Nickel oxide/reduced graphene oxide (NiO/rGO) as the photoanode layer was prepared by chemical bath deposition method. The NiO/rGO samples were used as the control to analyse the NiO/rGO exposed to γ (NiO/rGO-γ). XRD, FESEM and UV–Vis measurement were conducted to study the structure, morphology and the optical analysis of the samples. NiO/rGO-γ nanoflowers were observed through FESEM images with improved morphology. The porosity of the thin films was also increased after the exposure of γ radiation. The increased energy band gap of NiO/rGO-γ annealed at 400 °C exhibited higher power conversion efficiency of 1.03% with J sc , V oc anf FF of 29 mA/cm2, 0.15 and 0.3 V, respectively.

Notes

Acknowledgements

This work was supported by Exploratory Research Grants Scheme (ERGS/1/2013/TK07/UKM/03/2) and Photonic Technology Laboratory, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.

References

  1. 1.
    S.R. Messenger, E.A. Burke, G.P. Summers, M.A. Xapsos, R.J. Walters, E.M. Jackson, B.D. Weaver, IEEE Trans. Nucl. Sci. 46, 1595 (1999)CrossRefGoogle Scholar
  2. 2.
    W. Rong, G. Zengliang, Z. Xinghui, Z. Zuoxu, Sol. Energy Mater. Sol. Cells 77, 351 (2003)CrossRefGoogle Scholar
  3. 3.
    O. Tuzun, S. Altindal, S. Oktik, Renew. Energy 33, 286 (2008)CrossRefGoogle Scholar
  4. 4.
    K. Ali, S.A. Khan, M.Z. MatJafri, Int. J. Electrochem. Sci. 8, 7831 (2013)Google Scholar
  5. 5.
    G.P. Summers, E. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, IEEE Trans. Nucl. Sci. 40, 1372 (1993)CrossRefGoogle Scholar
  6. 6.
    H. Abdullah, S. Mahalingam, M. Ahmad, I. Asshaari, N. Amin, I. Yahya, B. Yuliarto, Malaysian J. Catal. 3, 25 (2018)Google Scholar
  7. 7.
    H. Abdullah, N.H. Yunos, S. Mahalingam, M. Ahmad, B. Yuliarto, Procedia Eng. (2017).  https://doi.org/10.1016/j.proeng.2017.03.001 Google Scholar
  8. 8.
    S. Mahalingam, H. Abdullah, A. Omar, N.A. Nawi, S. Shaari, A. Muchtar, I. Asshari, Adv. Mater. Res. 1107, 649 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Yella, A.H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science (2011).  https://doi.org/10.1126/science.1209688 Google Scholar
  10. 10.
    D.M. Tobnaghi, A. Rahnamaei, M. Vajdi, Int. J. Electrochem. Sci. 9, 2824 (2014)Google Scholar
  11. 11.
    D. Nikolić, K. Stanković, L. Timotijević, Z. Rajović, M. Vujisić, Int. J. Photoenergy (2013).  https://doi.org/10.1155/2013/843174 Google Scholar
  12. 12.
    H. Zhu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 111, 17455 (2007)CrossRefGoogle Scholar
  13. 13.
    N. Andrew, F. Michael, K. Robert, C. Yi-Bing, B. Udo, Nanotechnology 19, 295304 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Jiang, M. Li, R. Ding, D. Song, M. Trevor, Z. Chen, Mater. Lett. 107, 210 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Abdullah, S. Mahalingam, A. Omar, M.Z. Razali, A. Bolhan, S. Shaari, Mater. Sci. Forum 846, 298 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, Y. Wang, W. Zhang, C.M. Li, J. Phys. Chem. C 115, 12209 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Das, P. Sudhagar, Y.S. Kang, W. Choi, J. Mater. Res. 29, 299 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Abdullah, N.A. Atiqah, A. Omar, I. Asshaari, S. Mahalingam, Z. Razali, S. Shaari, J.S. Mandeep, H. Misran, J. Mater. Sci.: Mater. Electron. (2015).  https://doi.org/10.1007/s10854-015-2679-y Google Scholar
  19. 19.
    L.F. Dumée, C. Feng, L. He, Z. Yi, F. She, Z. Peng, W. Gao, C. Banos, J.B. Davies, C. Huynh, S. Hawkins, Carbon 70, 313 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Ansón-Casaos, J.A. Puértolas, F.J. Pascual, J. Hernández-Ferrer, P. Castell, A.M. Benito, W.K. Maser, M.T. Martinez, Appl. Surf. Sci. 301, 264 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Liu, X. Tang, Y. Liu, Z. Xu, H. Wang, M. Fang, D. Chen, J. Radioanal. Nucl. Chem. 308, 631 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Bucak, D. Rende, Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the NanoWorld (CRC Press, New York, 2013), pp. 78–80Google Scholar
  23. 23.
    S. Mahalingam, H. Abdullah, A. Manap, Electrochim. Acta 264, 275 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, I. Asshari, Sci. World J. (2015).  https://doi.org/10.1155/2015/403848 Google Scholar
  25. 25.
    C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 90, 263501 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, Ionics 22, 1985 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Mahalingam, H. Abdullah, I. Ashaari, S. Shaari, A. Muchtar, J. Phys. D (2016).  https://doi.org/10.1088/0022-3727/49/7/075601 Google Scholar
  28. 28.
    S. Mahalingam, H. Abdullah, Renew. Sustain. Energy Rev. 63, 245 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Hamadanian, M. Gravand, V. Farangi, Jabbari, in Proceedings of the 5th Symposiumon Advances in Science and Technology, Mashad, Iran, 2011Google Scholar
  30. 30.
    Y. Huang, D. Li, J. Feng, G. Li, Q. Zhang, J. Sol-Gel Sci. Technol. (2010).  https://doi.org/10.1007/s10971-010-2182-0 Google Scholar
  31. 31.
    E. Jamal, D. Kumar, M.R. Anantharaman, Bull. Mater. Sci. 34, 251 (2011)CrossRefGoogle Scholar
  32. 32.
    P.S. Patil, L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002)CrossRefGoogle Scholar
  33. 33.
    F.A. Moustafa, A.M. Fayad, F.M. Ezz-Eldin, I. El-Kashif, J. Non-Cryst. Solids 376, 18 (2013)CrossRefGoogle Scholar
  34. 34.
    V.S. Senthil Srinivasan, M.K. Patra, V.S. Choudhary, A. Pandya, J. Optoelectron. Adv. Mater. 9, 3725 (2007)Google Scholar
  35. 35.
    R.Y. Zhu, Nucl. Instrum. Methods Phys. Res. A 413, 297 (1998)CrossRefGoogle Scholar
  36. 36.
    K. Eguchi, H. Koga, K. Sekizawa, K. Sasaki, J. Ceram. Soc. Jpn. 108, 1087 (2000)CrossRefGoogle Scholar
  37. 37.
    K. Tvrdy, P.A. Frantsuzov, P.V. Kamat, Proc. Natl. Acad. Sci. USA 108, 29 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. Abdullah
    • 1
  • S. Y. Lye
    • 1
  • S. Mahalingam
    • 2
  • I. Asshari
    • 3
  • B. Yuliarto
    • 4
  • A. Manap
    • 5
  1. 1.Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institute of Sustainable Energy (ISE)Universiti Tenaga NasionalKajangMalaysia
  3. 3.Unit Pengajian Asas Kejuruteraan UPAK, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  4. 4.Advanced Functionals Materials Laboratory, Engineering Physics DepartmentInstitut Teknologi BandungBandungIndonesia
  5. 5.Department of Mechanical Engineering, College of EngineeringUniversiti Tenaga NasionalKajangMalaysia

Personalised recommendations