Fabrication and properties of high B value [Mn1.56Co0.96Ni0.48O4]1−x[SrMnO3]x (0 ≤ x ≤ 0.5) spinel–perovskite composite NTC films

  • Jun Zhang
  • Wenwen Kong
  • Aimin Chang


The [Mn1.56Co0.96Ni0.48O4]1−x[SrMnO3]x ((MCN)1−x(SM)x, 0 ≤ x ≤ 0.5) ceramic thin composite films were grown on SiO2/Si (100) substrates by the chemical solution deposition (CSD) method. The results of X-ray diffraction showed that the (MCN)1−x(SM)x (0 < x ≤ 0.5) films were a resemblance of the spinel–perovskite composite structure. The field emission scanning electron microscope analyses presented a considerable improvement in relative density with the increasing of the SM contents. In particular, the thermal constant of (MCN)1−x(SM)x ceramic film increased from 3289 to 5390 K with the increasing of the SM contents (x) from 0 to 0.5. This feature was attributed to the increase in the grain boundary resistance and the increase in Mn3+/Mn4+ pairs as the SM contents increased. From the spectroscopic ellipsometer spectroscopy results, it was found that the (MCN)0.5(SM)0.5 film had the biggest refractive index n value of 2.36 at 1.5 eV and a strong absorption peak at 4.0 eV. The sensitivity of MCN spinel ceramic film was enhanced by the compounding of SM. It was a significant disposition in the study of negative temperature coefficient thermistors.



This work was supported by West Light Foundation of the Chinese Academy of Sciences (No. 2015-XBQN-B-07) and by Young Elite Scientists Sponsorship Program by CAST (Grant No. 2016QNRC001).


  1. 1.
    H. Altenburg, O. Mrooz, J. Plewa, O. Shpotyuk, M. Vakiv, Semiconductor ceramics for NTC thermistors: the reliability aspects. J. Eur. Ceram. Soc. 21(10–11), 1787–1791 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistor: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Park, J.K. Lee, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95–xNi0.45Co0.15Cu0.45ZnxO4, (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloys Compd. 475(1–2), 513–517 (2009)CrossRefGoogle Scholar
  4. 4.
    R. Dannenberg, S. Baliga, R.J. Gambino, A.H. King, Resistivity, thermopower and the correlation to infrared active vibrations of Mn1.56Co0.96Ni0.48O4 spinel films sputtered in an oxygen partial pressure series. J. Appl. Phys. 86(1), 514–523 (1999)CrossRefGoogle Scholar
  5. 5.
    L. Yan, Y.D. Yang, Z.G. Wang, Z.P. Xing, J.F. Li, D. Viehland, Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44(19), 5080–5094 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Wu, Z.M. Huang, W. Zhou, C. Ouyang et al., Investigation of cation distribution, electrical, magnetic properties and their correlation in Mn2–xCo2xNi1–xO4 films. J. Appl. Phys. 115(11), 1377 (2014)Google Scholar
  7. 7.
    C. Ouyang, W. Zhou, J. Wu, Y. Hou, Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging. Appl. Phys. Lett. 105(2), 022105 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Zhou, Y. Hou, Y.Q. Gao, L.B. Zhang, Z.M. Huang, Experimental study on the responsivity enhancement of Mn1.56Co0.96Ni0.48O4 detector under moderate bias field. SPIE 8193, 81934G (2011)Google Scholar
  9. 9.
    Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)CrossRefGoogle Scholar
  10. 10.
    G.L. Wu, H.J. Wu, K.K. Wang, C.H. Zheng, Y.Q. Wang, A.L. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC. Adv. 6(63), 58069–58076 (2016)CrossRefGoogle Scholar
  11. 11.
    Y.Q. Gao, Z.M. Huang, Y. Hou, W. Wu et al., Structural and electrical properties of Mn1.56Co0.96Ni0.48O4, NTC thermistor films. Mater. Sci. Eng. B 185(185), 74–78 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Shi, W. Ren, W.W. Kong, B. Gao et al., High B value Mn–Co–Ni spinel films on alumina substrate by RF sputtering. J. Mater. Sci. Mater. Electron. 28(13), 9876–9881 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Yan, F.M. Bai, J.F. Li, D. Viehland, Nanobelt structure in perovskite–spinel composite thin films. J. Am. Ceram. Soc. 92(1), 17–20 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Ma, W. Ren, L. Wang, J.B. Xu et al., Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x(LaMnO3)x, composite thin films. J. Eur. Ceram. Soc. 36(16), 4059–4064 (2016)CrossRefGoogle Scholar
  15. 15.
    Q. Shi, S. Bao, W. Ren, X.B. Zhang et al., Structure, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x (LaMn0.6Al0.4O3)x composite thin films. Ceram. Int. 43(7), 5702–5707 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Wang, Y.Q. Zhang, Y. Bai, H.R. Zhang et al., Oxygen vacancy formation, crystal structures, and magnetic properties of three SrMnO3-δ films. Appl. Phys. Lett. 109(5), 2618 (2016)Google Scholar
  17. 17.
    P.D. Battle, T.C. Gibb, C.W. Jones, The structural and magnetic properties of SrMnO3: a reinvestigation. J. Solid. State Chem. 74(1), 60–66 (1988)CrossRefGoogle Scholar
  18. 18.
    T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame et al., Electronic structure of La1–xSrxMnO3 studied by photoemission and X-ray-absorption spectroscopy. Phys. Rev. B 51(20), 13942–13951 (1995)CrossRefGoogle Scholar
  19. 19.
    A.E. Naciri, M. Mansour, L. Johann, J.J. Grob, C. Eckert, Optical study of Si nanocrystals in Si/SiO2 layers by spectroscopic ellipsometry. Nucl. Instrum. Methods Phys. Res. 216(1), 167–172 (2004)CrossRefGoogle Scholar
  20. 20.
    K. Kieschnick, H. Zimmermann, P. Seegebrecht, Silicon-based optical receivers in BiCMOS technology for advanced optoelectronic integrated circuits. Mater. Sci. Semicond. Process. 3(5), 395–398 (2000)CrossRefGoogle Scholar
  21. 21.
    S.S. More, R.H. Kadam, A.B. Kadam, D.R. Mane, G.K. Bichile, Structural properties and magnetic interactions in Al3+ and Cr3+ co-substituted CoFe2O4 ferrite. Cent. Eur. J. Chem. 8(2), 419–425 (2010)Google Scholar
  22. 22.
    A.L. Feng, G.L. Wu, C. Pan, Y.Q. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17(6), 3786–3791 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Pan, J.Q. Zhang, K.C. Kou, Y. Zhang, G.L. Wu, Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 120, 1–8 (2018)CrossRefGoogle Scholar
  24. 24.
    H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 83(3–4), 305–315 (1998)CrossRefGoogle Scholar
  25. 25.
    W. Wei, W. Chen, D.G. Ivey, Rock salt–spinel structural transformation in anodically electrodeposited Mn–Co–O nanocrystals. Chem. Mater. 20(5), 1941–1947 (2008)CrossRefGoogle Scholar
  26. 26.
    H.G. Wang, J.B. Xu, C. Ma, P.J. Zhao et al., Infrared optical properties of ferroelectric 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3, thin films. Ceram. Int. 41(1), 475–480 (2015)CrossRefGoogle Scholar
  27. 27.
    C.C. Shen, W.Y. Chou, H.L. Liu, Temperature dependence of optical properties of pentacene thin films probed by spectroscopic ellipsometry. Solid State Commun. 188(6), 1–4 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek et al., An investigation into the surface topology and thickness profile of functional ceramic spinel manganate sputtered, evaporated and screen-printed layers. Appl. Surf. Sci. 252(24), 8760–8767 (2006)CrossRefGoogle Scholar
  29. 29.
    Y. Hou, Z.M. Huang, Y.Q. Gao, Y.J. Ge et al., Characterization of Mn1.56Co0.96Ni0.48O4, films for infrared detection. Appl. Phys. Lett. 92(20), 202115 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & Chemistry, CASUrumqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations