Advertisement

Mg2+-assisted hydrothermal growth of vertically-aligned Ni3S2 nanorod bundles on nickel foam for application as binder-free supercapacitor electrodes

  • H. Heidari
  • K. Malaie
  • M. Saremi
Article
  • 91 Downloads

Abstract

Vertically-aligned Ni3S2 nanorod bundles were grown on nickel foam through a novel hydrothermal method for application as supercapacitor electrode. In this method, Fe3+ ions were utilized as the etching agent for the nickel foam substrate; the nickel foam itself is both the nickel source for Ni3S2 and the scaffold substrate. Furthermore, it was revealed that Mg2+ ions can act as growth modifiers and afford vertically-aligned nanorod bundles of Ni3S2. A crystal growth mechanism was proposed and the vital roles of Fe3+ and Mg2+ were explained. Electrochemical studies of the Ni3S2 electrodes were conducted in 3 M KOH solution, and the cyclic voltammetric tests revealed that the charge storage of the Ni3S2 nanorod bundles involves both capacitive and charge-transfer mechanisms identified by high base currents and broad redox peaks, respectively. A specific capacitance of 230 mF cm−2 at a high potential scan rate of 100 mV s−1 with a stable performance up to 1000 cycles attests the superiority of the supercapacitor electrode.

References

  1. 1.
    H. Mahdavi, P.K. Kahriz, H. Gholipour, T. Ranjbar, Shahalizade, J. Mater. Sci.: Mater. Electron. 27, 7407 (2016)Google Scholar
  2. 2.
    D.P. Dubal, Y.P. Wu, R. Holze, ChemTexts 2, 13 (2016)CrossRefGoogle Scholar
  3. 3.
    M.R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel, M.D. Levi, J. Halim, P. Taberna, M.W. Barsoum, P. Simon, Y. Gogotsi, Nat. Energy 17105, 1 (2017)Google Scholar
  4. 4.
    Y. Gogotsi, P. Simon, Science (80-.) 334, 917 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 5925 (2016)CrossRefGoogle Scholar
  6. 6.
    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Brousse, D. Belanger, J.W. Long, J. Electrochem. Soc. 162, 5185 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Simon, T. Brousse, F. Favier, Supercapacitors Based on Carbon or Pseudocapacitive Materials (Wiley, London, 2017)CrossRefGoogle Scholar
  9. 9.
    S.H. Kazemi, K. Malae, J. Iran. Chem. Soc. 14, 419 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Malaie, M.R. Ganjali, T. Alizadeh, P. Norouzi, J. Mater. Sci.: Mater. Electron. 28, 14631 (2017)Google Scholar
  11. 11.
    K. Malaie, M.R. Ganjali, T. Alizadeh, P. Norouzi, J. Mater. Sci.: Mater. Electron. 29, 650 (2018)Google Scholar
  12. 12.
    Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nano Energy 22, 422 (2016)CrossRefGoogle Scholar
  13. 13.
    M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, Y. Gogotsi, Nat. Energy 6, 17105 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Zhu, G. Zhang, T. Hu, Z. He, Y. Lu, G. Wang, H. Guo, J. Luo, C. Lin, Y. Chen, J. Mater. Sci. 51, 1903 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Huang, A. Yan, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, J. Mater. Sci.: Mater. Electron. 28, 12747 (2017)Google Scholar
  16. 16.
    J. Wen, S. Li, K. Zhou, Z. Song, B. Li, Z. Chen, T. Chen, Y. Guo, G. Fang, J. Power Sources 324, 325 (2016)CrossRefGoogle Scholar
  17. 17.
    J.S. Chen, Y. Gui, D.J. Blackwood, J. Power Sources 325, 575 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Lin, F. Liu, X. Wang, Y. Ai, Z. Yao, L. Chu, S. Han, X. Zhuang, Electrochim. Acta 191, 705 (2016)CrossRefGoogle Scholar
  19. 19.
    J.J. Li, Y.X. Hu, M.C. Liu, L. Bin Kong, Y.M. Hu, W. Han, Y.C. Luo, L. Kang, J. Alloys Compd. 656, 138 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, Chem. Eng. J. 251, 116 (2014)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, J. Zhong, Electrochim. Acta 149, 316 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Ou, Z. Luo, RSC Adv. 6, 10280 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Wang, Y. Wang, H. Dou, G. Wei, X. Wang, Ceram. Int. 42, 9858 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Deleuze, S.L. Brantley, Geochim. Cosmochim. Acta 61, 1475 (1997)CrossRefGoogle Scholar
  25. 25.
    N.H. de Leeuw, J. Phys. Chem. B 106, 5241 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Hina, G.H. Nancollas, Rev. Mineral. Geochem. 40, 277 (2000)CrossRefGoogle Scholar
  27. 27.
    N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, J. Phys. Chem. B 104, 4189 (2000)CrossRefGoogle Scholar
  28. 28.
    Y.J. Han, J. Aizenberg, J. Am. Chem. Soc. 125, 4032 (2003)CrossRefGoogle Scholar
  29. 29.
    Z. Amjad, Mineral Scale Formation and Inhibition (Spinger, New York, 1996)Google Scholar
  30. 30.
    T. Brousse, D. Belanger, J.W. Long, J. Electrochem. Soc. 162, A5185 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao, C.T. Kwok, M. Yang, Z. Wang, D. Chua, S. Wang, Z. Lu, H. Pan, ACS Appl. Mater. Interfaces 9, 5959 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of chemistryRazi UniversityKermanshahIran
  2. 2.Center of Excellence in Electrochemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran
  3. 3.Department of electronics, West Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations