Synthesis, characterization and properties of polystyrene/NiO nanocomposites

Article
  • 22 Downloads

Abstract

In this study, polystyrene (PSt)/NiO nanocomposites (NCs) were prepared in three stages. First, NiO2 was prepared by the reaction of Ni(NO3)2⋅6H2O with sodium hypochlorite in the present of CTAB in alkaline solution, and then its oxidation by ethanol, obtained NiO nanoparticles (NPs). Second, the surface of NiO NPs was modified in order to obtain better dispersity and proper compatibility in organic media by oleic acid. Surface modification of NiO NPs was confirmed through lipophilic degree (LD). The results revealed that LD increased with the rising amount of modifier up to 5 wt%. Optimum modification was obtained at 65 °C and 4 h for reaction time. Third, the modified NiO NPs were dispersed in styrene monomer, and PSt/NiO NCs were synthesized via miniemulsion polymerization. The NiO NPs, its modified NPs and PSt/NiO NCs were characterized by XRD, FT-IR, FE-SEM, EDX, XPS and VSM. The average crystallite sizes of NiO were calculated to be 14 nm from XRD patterns. The results of EDX analysis and FT-IR spectra showed that chains of oleic acid have been successfully grafted on surface of NiO NPs. The morphological observation revealed that NiO NPs were embedded homogeneously in the inner part of polystyrene. Thermal stability of PSt/NiO NCs was studied using techniques of TGA and DSC. Compared to polystyrene, PSt/NiO NCs prepared by this method increased the glass transition temperature to 29 °C and increased the thermal degradation temperature that to 45 °C. The VSM results showed that the NiO NPs and PSt/NiO NCs have super paramagnetic properties.

Notes

Acknowledgements

The authors would like to thank the Research Council of Shahrood University of Technology for the financial support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J.J. Luo, I.M. Daniel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2003)CrossRefGoogle Scholar
  2. 2.
    A.R. Mahdavian, M. Ashjari, A.B. Makoo, Preparation of poly(styrene-methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization: An investigation into the compatiblization. Eur. Polym. J. 43, 336–344 (2007)CrossRefGoogle Scholar
  3. 3.
    L.A. Garcıa-Cerda, L.E. Romo-Mendoza, M.A. Quevedo-Lopez, Synthesis and characterization of NiO nanoparticles and their PMMA nanocomposites obtained by in situ bulk polymerization. J. Mater. Sci. 44, 4553–4556 (2009)CrossRefGoogle Scholar
  4. 4.
    H.R. Kricheldorf, O. Nuyken, G. Swift, Handbook of Polymer Synthesis, 2nd edn. (Marcel Dekker, New York, 2005), pp. 77–78Google Scholar
  5. 5.
    Á Costoyas, J. Ramos, J. Forcada, Encapsulation of silica nanoparticles by miniemulsion polymerization. J. Polym. Sci. A 47, 935–948 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, H. Xu, H. Gu, Synthesis of raspberry-like SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. J. Nanosci. Nanotechnol. 9, 1571–1576 (2009)CrossRefGoogle Scholar
  7. 7.
    S.-W. Zhang, S. Zhou, Y.-M. Weng, L.-M. Wu, Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir 21, 2124–2128 (2005)CrossRefGoogle Scholar
  8. 8.
    F. Yan, J. Li, J. Zhang, F. Liu, W. Yang, Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J. Nanopart. Res. 11, 289–296 (2009)CrossRefGoogle Scholar
  9. 9.
    L.P. Ramírez, K. Landfester, Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys. 204, 22–31 (2003)CrossRefGoogle Scholar
  10. 10.
    P.S. Nair, T. Radhakrishnan, N. Revaprasadu, C.G.C.E. van Sittert, V. Djokovic, A.S. Luyt, Characterization of polystyrene filled with HgS nanoparticles. Mater. Lett. 58, 361–364 (2004)CrossRefGoogle Scholar
  11. 11.
    X.L. Sun, Z.P. Fan, L.D. Zhang, L. Wang, Z.J. Wei, X.Q. Wang, W.L. Liu, Superhydrophobicity of silica nanoparticles modified with polystyrene. Appl. Surf. Sci. 257, 2308–2312 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Kaboudin, H. Khanmohammadi, F. Kazemi, Polymer supported gold nanoparticles: synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water. Appl. Surf. Sci. 425, 400–406 (2017)CrossRefGoogle Scholar
  13. 13.
    C. Hodges, Y. Ding, S. Biggs, The influence of nanoparticles on polystyrene adhesion. Adv. Powder Technol. 21, 13–18 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Tian, C. Liu, H. Yang, X. Ren, In situ synthesis of copper nanoparticles/polystyrene composite. Colloids Surf. A 397, 12–15Google Scholar
  15. 15.
    J. Chen, G. Cheng, Y. Chai, W. Han, W. Zong, J. Chen, C. Li, W. Wang, L. Ou, Y. Yu, Preparation of nano-CaCO3/polystyrene nanocomposite beads for efficient bilirubin removal. Colloids Surf. B 161, 480–487 (2018)CrossRefGoogle Scholar
  16. 16.
    W. Han, Y. Bai, S. Liu, C. Ge, L. Wang, Z. Ma, Y. Yang, X. Zhang, Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@PS. Composites A 102, 218–227 (2017)CrossRefGoogle Scholar
  17. 17.
    O. Bera, B. Pilic, J. Pavlicevic, M. Jovicic, B. Hollo, K.M. Szecsenyi, M. Spirkova, Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim. Acta 515, 1–5 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Gu, N. Li, L. Tian, Z. Lv, Q. Zhang, High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 5, 36334–36339 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Gu, Y. Guo, X. Yang, C. Liang, W. Geng, L. Tang, N. Li, Q. Zhang, Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Composites A 95, 267–273 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Yang, L. Tang, Y. Guo, C. Liang, Q. Zhang, K. Kou, J. Gu, Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionali-zed nBN fillers. Composites A 101, 237–242 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gua, Y. Wu, H. Liud, Z. Guo, Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites by chemically modified graphene via in-situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C (2018).  https://doi.org/10.1039/C8TC00452H Google Scholar
  22. 22.
    E. Soleimani, R. Taheri, Synthesis and surface modification of CuO nanoparticles: Evaluation of dispersion and lipophilic properties of modified nanoparticles. Nano-Struct. Nano-Object. 10, 167–175 (2017)CrossRefGoogle Scholar
  23. 23.
    J.-H. Kang, Y.-P. Guo, Y. Chen, Z.-C. Wang, Preparation and UV-light absorption property of oleic acid surface modified ZnO nanoparticles. Chem. Res. Chin. Univ. 27, 500–502 (2011)Google Scholar
  24. 24.
    R.Y. Hong, L.L. Chin, J.H. Li, H.Z. Li, Y. Zheng, J. Ding, Preparation and application of polystyrene-grafted ZnO nanoparticles. Polym. Adv. Technol. 18, 901–906 (2007)CrossRefGoogle Scholar
  25. 25.
    E. Soleimani, F. Babaei-Niavarzi, Preparation, characterization and properties of PMMA/NiO polymer nanocomposites. J. Mater. Sci.: Mater. Electron. 29, 2392–2405 (2018)Google Scholar
  26. 26.
    F.A. Harraz, R.M. Mohamed, A. Shawky, I.A. Ibrahim, Composition and phase control of Ni/NiO nanoparticles for photocatalytic degradation of EDTA. J. Alloys Compd. 508, 133–140 (2010)CrossRefGoogle Scholar
  27. 27.
    D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou, F.H. Wang, Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technol. 147, 113–116 (2004)CrossRefGoogle Scholar
  28. 28.
    X. Guo, L. Zhao, L. Zhang, J. Li, Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methylmethacrylate) via one-pot in situ polymerization. Appl. Surf. Sci. 258, 2404–2409 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Chung, S.R. Yun, C.W. Lee, N.J. Jo, C.H. Yo, K.S. Rya, Inorganic/organic nanocomposites of polyaniline and Fe3O4 with hollow cluster structures using polystyrene template. Bull. Korean Chem. Soc. 31, 2065–2068 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Feng, L. He, Y. Ma, Y. Wang, Grafting poly(methylmethacrylate) onto silica nanoparticle surfaces via a facile esterification reaction. Mater. Chem. Phys. 116, 158–163 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Dadkhah, F. Ansari, M. Salavati-Niasari, Thermal treatment synthesis of SnO2 nanoparticles and investigation of its light harvesting application. Appl. Phys. A 122, 700 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati-Niasari, Lead hexaferrite nanostructures: Green amino acid sol-gel autocombustion synthesis, characterization and considering magnetic property. J. Mater. Sci.: Mater. Electron. 28, 17627–17634 (2017)Google Scholar
  33. 33.
    A. Khansari, M. Enhessari, M. Salavati-Niasari, Synthesis and characterization of nickel oxide nanoparticles from Ni(salen) as precursor. J. Clust. Sci. 24, 289–297 (2013)CrossRefGoogle Scholar
  34. 34.
    M.M. Kashani-Motlagh, A.A. Youzbashi, L. Sabaghzadeh, Synthesis and characterization of nickel hydroxide/oxide nanoparticles by the complexation-precipitation method. Int. J. Phys. Sci. 6, 1471–1476 (2011)Google Scholar
  35. 35.
    C.B. Wang, G.Y. Gau, S.J. Gau, C.W. Tang, J.L. Bi, Preparation and characterization of nanosized nickel oxide. Catal. Lett. 101, 241–247 (2005)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, W. Eli, L. Zhang, H. Gao, Y. Liu, P. Li, A new method for surface modification of nano-CaCO3 and nano-Al2O3 at room temperature. Adv. Powder Technol. 21, 203–205 (2010)CrossRefGoogle Scholar
  37. 37.
    F. Ansari, M. Bazarganipour, M. Salavati–Niasari, NiTiO3/NiFe2O4 nanocomposites: Simple sol–gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mater. Sci. Semicond. Proc. 43, 34–40 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Ramos-González, L.A. García-Cerda, M.A. Quevedo-López, Study of the surface modification with oleic acid of nanosized HfO2 synthesized by the polymerized complex derived sol–gel method. Appl. Surf. Sci. 258, 6034–6039 (2012)CrossRefGoogle Scholar
  39. 39.
    S.Y. Lee, M.T. Harris, Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. J. Colloid Interface Sci. 293, 401–408 (2006)CrossRefGoogle Scholar
  40. 40.
    R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 119, 71–81 (2006)CrossRefGoogle Scholar
  41. 41.
    T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2, 194–205 (2005)CrossRefGoogle Scholar
  42. 42.
    S. Yang, H. Liu, Z. Zhang, Fabrication of novel multi hollow super paramagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions. Langmuir 24, 10395–10401 (2008)CrossRefGoogle Scholar
  43. 43.
    X. Yan, Q. He, X. Zhang, H. Gu, H. Chen, Q. Wang, L. Sun, S. Wei, Z. Guo, Magnetic polystyrene nanocomposites reinforced with magnetite nanoparticles. Macromol. Mater. Eng. 299, 485–494 (2014)CrossRefGoogle Scholar
  44. 44.
    B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. De Miguel, L. Bergström, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci. Technol. Adv. Mater. 14, 023001 (2013)CrossRefGoogle Scholar
  45. 45.
    A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967 (2010)CrossRefGoogle Scholar
  46. 46.
    S. Mallakpour, M. Madani, A review of current coupling agents for modification of metal oxide nanoparticles. Prog. Org. Coat. 86, 194–207 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg. Chim. Acta 362, 3691–3697 (2009)CrossRefGoogle Scholar
  48. 48.
    N. Tomczak, Sh. Gu, M. Han, N.F. Van Hulst, G.J. Vancso, Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radioactive decay. Eur. Polym. J. 42, 2205–2210 (2006)CrossRefGoogle Scholar
  49. 49.
    L. Tang, B. Zhou, Y. Tian, H. Bala, Y. Pan, S. Ren, Y. Wang, X. Lv, M. Li, Z. Wang, Preparation and surface modification of uniform ZnO nanorods via an one-step process. Colloids Surf. A 296, 92–96 (2007)CrossRefGoogle Scholar
  50. 50.
    P. Liu, Z. Su, Preparation and characterization of PMMA/ZnO nanocomposites via in–situ polymerization method. J. Macromol. Sci. B 45, 131—138 (2006)Google Scholar
  51. 51.
    A.S. Patole, S.P. Patole, M.H. Song, J.Y. Yoon, J.H. Kim, T.H. Kim, Synthesis and characterization of silica/polystyrene composite nanoparticles by in situ mini-emulsion polymerization. Elastom. Compos. 44, 34–40 (2009)Google Scholar
  52. 52.
    P. Dallas, V. Georgakilas, D. Niarchos, P. Komninou, T. Kehagias, D. Petridis, Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology 17, 2046–2053 (2006)CrossRefGoogle Scholar
  53. 53.
    F. Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. J. Alloys Compd. 476, 797–801 (2009)CrossRefGoogle Scholar
  54. 54.
    M. Salavati-Niasari, N. Mir, F. Davar, Synthesis and characterization of NiO nanoclusters via thermal decomposition. Polyhedron 28, 1111–1114 (2009)CrossRefGoogle Scholar
  55. 55.
    Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S.M. Hosseinpour-Mashkani, F. Tavakoli, Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor. J. Clust. Sci. 23, 577–583 (2012)CrossRefGoogle Scholar
  56. 56.
    M. Salavati-Niasar, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J. Alloys Compd. 494, 410–414 (2010)CrossRefGoogle Scholar
  57. 57.
    S. Farhadi, Z. Roustaei-Zaniyani, Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II)nitrate, [Ni(NH3)6](NO3)2, complex. Polyhedron 30, 1244–1249 (2011)CrossRefGoogle Scholar
  58. 58.
    B.I. Nandapure, S.B. Kondawar, M.Y. Salunkhe, A.I. Nandapure, Magnetic and transport properties of conducting polyaniline/nickel oxide nanocomposites. Adv. Mater. Lett. 4, 134–140 (2013)CrossRefGoogle Scholar
  59. 59.
    H.T. Rahal, R. Awad, A.M. Abdel–Gaber, D. El-Said Bakeer, Synthesis, characterization, and magnetic properties of pure and EDTA–capped NiO nanosized particles. J. Nanomater. 2017, 7460323 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inorganic Chemistry Research Laboratory, Faculty of ChemistryShahrood University of TechnologyShahroodIran

Personalised recommendations