Synthesis and characterization of Zn-doped Mn3O4 thin films using successive ionic layer adsorption and reaction technique: Its structural, optical and wettability properties

  • Ozkan Bayram
  • Mehmet Emrah Ertargin
  • Erdal Igman
  • Harun Guney
  • Onder Simsek


In this study, it is aimed to obtain Zn doped Mn3O4 (manganese oxide) nanostructured thin films on the soda lime glass substrates by successive ionic layer adsorption and reaction technique. The tetragonal crystal structure of the all thin films was detected using XRD spectroscopy. The average crystallite size of undoped Mn3O4 thin films was calculated to be 29 nm and for Zn-doped thin films, this value decreased to 23 nm with increasing Zn concentration. Characteristic peaks for thin films were also confirmed by RAMAN spectroscopy. The morphological structures of zinc-doped manganese oxide nano-sheets thin films were revealed by SEM. Using UV–Vis spectroscopy, it was found that the optical band gap of Mn3O4 thin films decreased from 2.05 to 1.73 eV with Zn doping. It has also been understood from the wettability analyzes of thin films that all thin films have a hydrophilic character. From all these analyzes, it is thought that the Zn doped Mn3O4 thin films have the potential to be used in supercapacitor applications.


  1. 1.
    O. Erlandsson et al., Electrochromic properties of manganese oxide (MnOx) thin films made by electron beam deposition. Phys. Status Solidi (a) 139(2), 451–457 (1993)CrossRefGoogle Scholar
  2. 2.
    B. Yao et al., Grain growth and void formation in dielectric-encapsulated Cu thin films. J. Mater. Res. 23(7), 2033–2039 (2008)CrossRefGoogle Scholar
  3. 3.
    G. An et al., Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19(27), 275709 (2008)CrossRefGoogle Scholar
  4. 4.
    W. Wei et al., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Jiang et al., Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2(10), 2195–2198 (2010)CrossRefGoogle Scholar
  6. 6.
    D. Dubal et al., Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J. Alloys Compd. 497(1), 166–170 (2010)CrossRefGoogle Scholar
  7. 7.
    D.P. Dubal, R. Holze, Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible, electrochemical energy storage. J. Power Sources 238, 274–282 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Chen et al., The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process. Appl. Surf. Sci. 255(7), 3959–3964 (2009)CrossRefGoogle Scholar
  9. 9.
    A.E. Morales, M.H. Zaldivar, U. Pal, Indium doping in nanostructured ZnO through low-temperature hydrothermal process. Opt. Mater. 29(1), 100–104 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Srivastava et al., Influence of Fe doping on nanostructures and photoluminescence of sol–gel derived ZnO. Mater. Chem. Phys. 114(1), 194–198 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Amara et al., Microstructural, optical and ethanol sensing properties of sprayed Li-doped Mn3O4 thin films. Mater. Res. Bull. 75, 217–223 (2016)CrossRefGoogle Scholar
  12. 12.
    I. Sheikhshoaie, S. Ramezanpour, M. Khatamian, Synthesis and characterization of thallium doped Mn3O4 as superior sunlight photocatalysts. J. Mol. Liq. 238, 248–253 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Ramezanpour, I. Sheikhshoaie, M. Khatamian, Synthesis, characterization and photocatalytic properties of V-doped Mn3O4 nanoparticles as a visible light-activated photocatalyst. J. Mol. Liq. 231, 64–71 (2017)CrossRefGoogle Scholar
  14. 14.
    O. Nilsen, H. Fjellvåg, A. Kjekshus, Growth of manganese oxide thin films by atomic layer deposition. Thin Solid Films 444(1), 44–51 (2003)CrossRefGoogle Scholar
  15. 15.
    L. Guo et al., Structural characteristic and magnetic properties of Mn oxide films grown by plasma-assisted MBE. J. Cryst. Growth 227, 955–959 (2001)CrossRefGoogle Scholar
  16. 16.
    C.-C. Hu, C.-C. Wang, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc. 150(8), A1079–A1084 (2003)CrossRefGoogle Scholar
  17. 17.
    H.Y. Xu et al., Chemical bath deposition of hausmannite Mn3O4 thin films. Appl. Surf. Sci. 252(12), 4091–4096 (2006)CrossRefGoogle Scholar
  18. 18.
    R. Bayón et al., Characterization of copper–manganese-oxide thin films deposited by dip-coating. Sol. Energy Mater. Sol. Cells 92(10), 1211–1216 (2008)CrossRefGoogle Scholar
  19. 19.
    C.-Y. Chen et al., Hybrid manganese oxide films for supercapacitor application prepared by sol–gel technique. Thin Solid Films 518(5), 1557–1560 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Bayón, G. San Vicente, Á Morales, Durability tests and up-scaling of selective absorbers based on copper–manganese oxide deposited by dip-coating. Sol. Energy Mater. Sol. Cells 94(6), 998–1004 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Chaudhari et al., Chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications. J. Sci. 1(4), 476–481 (2016)Google Scholar
  22. 22.
    A. Jha, R. Thapa, K. Chattopadhyay, Structural transformation from Mn3O4 nanorods to nanoparticles and band gap tuning via Zn doping. Mater. Res. Bull. 47(3), 813–819 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Dong et al., Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 5(19), 9508–9516 (2013)CrossRefGoogle Scholar
  24. 24.
    K.J. Kim, Y.R. Park, Sol–gel growth and structural and optical investigation of manganese-oxide thin films: structural transformation by Zn doping. J. Cryst. Growth 270(1), 162–167 (2004)CrossRefGoogle Scholar
  25. 25.
    T. Larbi et al., Nickel content effect on the microstructural, optical and electrical properties of p-type Mn3O4 sprayed thin films. J. Alloys Compd. 626, 93–101 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Ran et al., Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites. J. Alloys Compd. 577, 288–294 (2013)CrossRefGoogle Scholar
  27. 27.
    A.U. Ubale et al., Size-dependent structural, electrical and optical properties of nanostructured iron selenide thin films deposited by chemical bath deposition method. Solid State Sci. 16, 134–142 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Ristić et al., Synthesis and long-term phase stability of Mn3O4 nanoparticles. J. Mol. Struct. 1044, 255–261 (2013)CrossRefGoogle Scholar
  29. 29.
    Z. Chen et al., Microstructural evolution of oxides and semiconductor thin films. Prog. Mater. Sci. 56(7), 901–1029 (2011)CrossRefGoogle Scholar
  30. 30.
    T. Larbi et al., A study of optothermal and AC impedance properties of Cr-doped Mn3O4 sprayed thin films. Mater. Res. Bull. 70, 254–262 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Dubal et al., A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J. Electroanal. Chem. 647(1), 60–65 (2010)CrossRefGoogle Scholar
  32. 32.
    A.J. Nelson, J.G. Reynolds, J.W. Roos, Comprehensive characterization of engine deposits from fuel containing MMT®. Sci. Total Environ. 295(1), 183–205 (2002)CrossRefGoogle Scholar
  33. 33.
    A. Ubale et al., Characterization of nanostructured Mn3O4 thin films grown by SILAR method at room temperature. Mater. Chem. Phys. 136(2), 1067–1072 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Belkhedkar, A. Ubale, Physical properties of nanostructured Mn3O4 thin films synthesized by SILAR method at room temperature for antibacterial application. J. Mol. Struct. 1068, 94–100 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Pankove, Optical Processes in Semiconductors, vol 92 (Prentice-Hall, New Jersey, 1971)Google Scholar
  36. 36.
    L. Kuang et al., Hydrothermal synthesis and metal ions doping effects of single-crystal Mn3O4. Mater. Res. Bull. 48(9), 3122–3128 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Bico, U. Thiele, D. Quéré, Wetting of textured surfaces. Colloids Surf. A 206(1), 41–46 (2002)CrossRefGoogle Scholar
  38. 38.
    B. Bhushan, Y.C. Jung, Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107(10), 1033–1041 (2007)CrossRefGoogle Scholar
  39. 39.
    S.S. Latthe et al., Superhydrophobic silica films by sol–gel co-precursor method. Appl. Surf. Sci. 256(1), 217–222 (2009)CrossRefGoogle Scholar
  40. 40.
    D. Dubal et al., A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J. Alloy. Compd. 484(1), 218–221 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Minakshi et al., Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery: part II. Comparison of the behavior of EMD and battery grade MnO2 in Zn|MnO2| aqueous LiOH electrolyte. J. Power Sources 138(1), 319–322 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Schmitt, H.-C. Flemming, FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegrad. 41(1), 1–11 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ozkan Bayram
    • 1
  • Mehmet Emrah Ertargin
    • 2
  • Erdal Igman
    • 1
  • Harun Guney
    • 2
    • 3
  • Onder Simsek
    • 3
    • 4
  1. 1.Material Science and Nanotechnology Engineering, Engineering FacultyBayburt UniversityBayburtTurkey
  2. 2.Department of Electric and Energy, Vocational SchoolAgri Ibrahim Cecen UniversityAgriTurkey
  3. 3.Central Application and Research Laboratory (MERLAB)Agri Ibrahim Cecen UniversityAgriTurkey
  4. 4.Department of Physics Education, Faculty of EducationAtaturk UniversityErzurumTurkey

Personalised recommendations