Advertisement

Vanadium doping for lowering the preparation temperatures of CaCu3Ti4O12 ceramics and its effect on their microstructures and dielectric properties

  • Lu Tang
  • Fei Xue
  • Peng Guo
  • Zhe Luo
  • Zengnian Xin
  • Wang Li
Article
  • 62 Downloads

Abstract

Because of their colossal dielectric constant, CaCu3Ti4O12 ceramics have promising applications for cofired multilayer ceramic capacitors. However, their preparation temperature is still too high for such type of applications. This work demonstrates that V2O5 doping can considerably lower the calcination and sintering temperatures of CaCu3Ti4O12 ceramics. Herein, the CaCu3Ti4O12 ceramics, partially substituted by V5+ for Ti4+ with a molecular formula of CaCu3Ti4−xVxO12 (x = 0, 0.01, 0.03, 0.05), were prepared by the solid state reaction method using V2O5 as the doping substance. It has been shown that V2O5 can considerably lower the calcination and sintering temperatures to 870 and 950 °C, respectively. The dielectric constant of the low temperature prepared CaCu3Ti4−xVxO12 ceramics is much larger than the undoped CaCu3Ti4O12. This work provides a preliminary step for possible commercial applications of CaCu3Ti4O12 ceramics for cofired multilayer ceramic capacitors.

Notes

Acknowledgements

This work was supported by the Doctoral Scientific Research Foundation (No. 8100200256) and the Natural Science Research Program (No. 16ZRYB10) of Jiangxi University of Technology.

References

  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 152, 323–325 (2000)CrossRefGoogle Scholar
  2. 2.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)CrossRefGoogle Scholar
  3. 3.
    Y. Lin, Y.B. Chen, T. Garret, S.W. Liu, C.L. Chen, L. Chen, R.P. Bontchev, A. Jacobson, J.C. Jiang, E.I. Meletis, J. Hortwiz, H.D. Wu, Epitaxial growth of dielectric CaCu3Ti4O12 thin films on (001) LaAlO3 by pulsed laser deposition. Appl. Phys. Lett. 81, 631–633 (2002)CrossRefGoogle Scholar
  4. 4.
    S.Y. Chung, I.D. Kim, S.J. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat Mater 3, 774–778 (2004)CrossRefGoogle Scholar
  5. 5.
    T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321–1323 (2002)CrossRefGoogle Scholar
  6. 6.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper–titanate. Solid State Commun. 115, 217–220 (2000)CrossRefGoogle Scholar
  7. 7.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Senda, S. Rhouma, E. Torkani, A. Megriche, C. Autret, Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic. J. Alloys Compd. 698, 152–158 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Singh, B.C. Sin, I.W. Kim, K.D. Mandal, H. Chung, Y. Lee, A novel one-step flame synthesis method for tungsten-doped CCTO. J. Am. Ceram. Soc. 99, 27–34 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhan, L. Ju, Microstructure and enhanced dielectric response in Mg doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 663, 345–350 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Very high-performance dielectric properties of Ca1−3x/2YbxCu3Ti4O12 ceramics. J. Alloys Compd. 612, 103–109 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Zhang, Q. Zhao, A. Chang, H. Ye, S. Chen, Y. Wu, New negative temperature coefficient thermistor ceramics in Mn-doped CaCu3−xMnxTi4O12 (0 ≤ x ≤ 1) system. Ceram. Int. 40, 11221–11227 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Ni, X.M. Chen, Enhanced giant dielectric response in Mg-substituted CaCu3Ti4O12 ceramics. Solid State Commun. 149, 379–383 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Du, F. Wei, W. Li, N. Chen, Co-doping effects of A-site Y3+ and B-site Al3+ on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 37, 4653–4659 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Goswami, A. Sen, Low temperature sintering of CCTO using P2O5 as a sintering aid. Ceram. Int. 36, 1629–1631 (2010)CrossRefGoogle Scholar
  16. 16.
    B.S. Prakash, K.B.R. Varma, Effect of the addition of B2O3 and BaO–B2O3–SiO2 glasses on the microstructure and dielectric properties of giant dielectric constant material CaCu3Ti4O12. J. Solid State Chem. 180, 1918–1927 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Wang, Y. Pu, H. Wu, K. Chen, N. Xu, Effects of SrO–B2O3–SiO2 glass additive on the microstructure and dielectric properties of CaCu3Ti4O12. J. Mater. Sci. 23, 612–617 (2012)Google Scholar
  18. 18.
    R. Löhnert, H. Bartsch, R. Schmidt, B. Capraro, J. Töpfer, Microstructure and electric properties of CaCu3Ti4O12 multilayer capacitors. J. Am. Ceram. Soc. 98, 141–147 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Löhnert, B. Capraro, S. Barth, H. Bartsch, J. Müller, J. Töpfer, Integration of CaCu3Ti4O12 capacitors into LTCC multilayer modules. J. Eur. Ceram. Soc. 35, 3043–3049 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, Effect of vanadium doping on the dielectric and nonlinear current–voltage characteristics of CaCu3Ti4O12 ceramic. J. Alloys Compd. 506, 853–857 (2010)CrossRefGoogle Scholar
  21. 21.
    C.C. Wang, L.W. Zhang, Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett. 88, 042906 (2006)CrossRefGoogle Scholar
  22. 22.
    S.W. Choi, S.H. Hong, Effect of Al doping on the electric and dielectric properties of CaCu3Ti4O12. J. Am. Ceram. Soc. 90, 4009–4011 (2007)Google Scholar
  23. 23.
    H.T. Yu, H.X. Liu, D.B. Luo et al., Microwave synthesis of high dielectric constant CaCu3Ti4O12. J. Mater. Process. Technol. 208, 145–148 (2008)CrossRefGoogle Scholar
  24. 24.
    M.H. Weng, C.L. Huang, Single Phase Ba2Ti9O20 microwave dielectric ceramics prepared by low temperature liquid phase sintering. Jpn. J. Appl. Phys. 39, 3528–3529 (2000)CrossRefGoogle Scholar
  25. 25.
    S.H. Lee, D.Y. Kim, N.M. Hwang, Effect of anorthite liquid on the abnormal grain growth of alumina. J. Eur. Ceram. Soc. 22, 317–321 (2002)CrossRefGoogle Scholar
  26. 26.
    J.H. Ahn, J.H. Lee, S.H. Hong et al., Effect of the liquid-forming additive content on the kinetics of abnormal grain growth in alumina. J. Am. Ceram. Soc. 86, 1421–1423.] (2003)CrossRefGoogle Scholar
  27. 27.
    Y.Y. Li, W. Li, G.P. Du et al., Low temperature preparation of CaCu3Ti4O12 ceramics with high permittivity and low dielectric loss. Ceram. Int. 43, 9178–9183 (2017)CrossRefGoogle Scholar
  28. 28.
    K.M. Kim, S.J. Kim, J.H. Lee, D.-Y. Kim, Microstructural evolution and dielectric properties of SiO2-doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 27, 3991–3995 (2007)CrossRefGoogle Scholar
  29. 29.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002)CrossRefGoogle Scholar
  30. 30.
    E.A. Patterson, S. Kwon, C.C. Huang, D.P. Cann, Effects of ZrO2 additions on the dielectric properties of CaCu3Ti4O12. Appl. Phys. Lett. 87, 182911 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lu Tang
    • 1
  • Fei Xue
    • 1
  • Peng Guo
    • 1
  • Zhe Luo
    • 1
  • Zengnian Xin
    • 1
  • Wang Li
    • 1
  1. 1.The Center of Collaboration and InnovationJiangxi University of TechnologyNanchangChina

Personalised recommendations