The dielectric properties and diffuse phase transition of non-stoichiometric barium strontium titanate based capacitor ceramics

  • Chen Zhang
  • Fangxu Chen
  • Zhixin Ling
  • Xin Zhong
  • Gang Jian
  • Yuanliang Li


The microstructure, dielectric properties and ferroelectric–paraelectric phase transition of non-stoichiometric (Ba0.75Sr0.25)Ti1−δO3−2δ (δ = 0 –0.03) ceramics prepared by conventional solid state method were studied with the non-stoichiometric level using XRD, SEM and LCR measuring system. It is found that the non-stoichiometric (Ba0.75Sr0.25)Ti1−δO3−2δ ceramics are single phase solid solutions with typical cubic perovskite structure. The average grain size of (Ba0.75Sr0.25)Ti1−δO3−2δ ceramics decreases with the increasing non-stoichiometric level when δ is less than 0.02. The phase transformation temperature decreases significantly with the increase of non-stoichiometric level due to the appearance of charged vacancies and the oxygen vacancies \({V}_{O}^{..}\) also contribute to the fine performance in dielectric loss of (Ba0.75Sr0.25)Ti1−δO3−2δ ceramics. The diffuseness of ferroelectric–paraelectric phase transition resulting from the composition fluctuation is exacerbated significantly as the non-stoichiometric level increases. A normal ferroelectric behavior with relatively weak diffuse phase transition is observed for stoichiometric (Ba0.75Sr0.25)TiO3 ceramic while a relaxor behavior is obtained in the non-stoichiometric (Ba0.75Sr0.25)Ti1−δO3−2δ ceramics with high non-stoichiometric level.



This work is sponsored by Suzhou Pant Piezoelectric Tech. Co. Ltd and National Demonstration Center for Experimental Materials Science and Engineering Education (Jiangsu University of Science and Technology). This work is also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    L.H. Zhang, S.L. Wang, F.H. Liu, J. Electron. Mater. 44, 3408 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Gu, W.Y. Shih, W.H. Shih, J. Am. Ceram. Soc. 86, 217 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, Nat. Mater. 13, 31 (2014)CrossRefGoogle Scholar
  4. 4.
    J.L. Jia, L. Zhu, W.Y. Zhou, Z.G. Chang, M.L. Yang, Adv. Appl. Ceram. 108, 132 (2009)CrossRefGoogle Scholar
  5. 5.
    L.E. Cross, Ferroelectrics 151, 305 (1994)CrossRefGoogle Scholar
  6. 6.
    H.V. Alexandru, C. Berbecaru, A. Ioachim, L. Nedelcu, A. Dutu, Appl. Surf. Sci. 253, 354 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Saeed, B. Ruthramurthy, W.H. Yong, O.B. Hoong, T.K. Ban, Y.H. Kwang, J. Mater. Sci.-Mater. Electron. 26, 9859 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Zhang, Y. Qu, Trans. Nonferr. Metal. Soc. 22, 2742 (2012)CrossRefGoogle Scholar
  9. 9.
    J.H. Jeon, Y.D. Hahn, H.D. Kim, J. Eur. Ceram. Soc. 21, 1653 (2001)CrossRefGoogle Scholar
  10. 10.
    B. Su, T.W. Button, J. Appl. Phys. 95, 1382 (2004)CrossRefGoogle Scholar
  11. 11.
    C. Chen, H. Zhuang, X. Zhu, D. Zhang, K. Zhou, H. Yan, J. Mater. Sci.-Mater. Electron. 26, 2486 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, J. Zhai, X. Chou, X. Yao, Mater. Chem. Phys. 111, 409 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Li, Y. Qu, Mater. Res. Bull. 44, 82 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Su, J.E. Holmes, B.L. Cheng, T.W. Button, J. Electroceram. 9, 111 (2002)CrossRefGoogle Scholar
  15. 15.
    U. Syamaprasad, R.K. Galgali, B.C. Mohanty, Mater. Lett. 8, 36 (1989)CrossRefGoogle Scholar
  16. 16.
    H. Dong, D. Jin, C. Xie, J. Cheng, L. Zhou, J. Chen, Mater. Lett. 135, 83 (2014)CrossRefGoogle Scholar
  17. 17.
    C. Zhang, Z. Ling, G. Jian, J. Mater. Sci.-Mater. Electron. 27, 11770 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Zhang, Z. Ling, G. Jian, F. Chen, Trans. Nonferr. Met. Soc. China 27, 2656 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Zhang, Z. Ling, F. Chen, G. Jian, Y. Li, J. Mater. Sci.-Mater. Electron. 29, 331 (2018)CrossRefGoogle Scholar
  20. 20.
    E.P. Hyatt, S.A. Long, R.E. Rose, Am. Ceram. Soc. Bull. 46, 732 (1967)Google Scholar
  21. 21.
    Z. Valdez-Nava, S. Guillemet-Fritsch, C. Tenailleau, T. Lebey, B. Durand, J.Y. Chane-Ching, J. Electroceram. 22, 238 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Wada, T. Hoshina, H. Yasuno, S.M. Nam, H. Kakemoto, T. Tsurumi, M. Yashima, J. Korean Phys. Soc. 46, 303 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.Hebei Provincial Key Laboratory of Inorganic Nonmetallic MaterialsNorth China University of Science and TechnologyTangshanChina

Personalised recommendations