Combustion derived Y doped CuO nanoparticle: its structural, morphological and optical properties

  • L. Vimala Devi
  • T. Selvalakshmi
  • S. Sellaiyan
  • P. Sahaya Murphin kumar
  • S. Sankar
Article
  • 9 Downloads

Abstract

In the present paper, we report Yttrium doped CuO nanoparticles by varying weight ratios as 0.2, 0.4 and 0.6 as wt% of Y synthesized using an energy-efficient and solution combustion method with glycine in use as a fuel. Structural and optical characterization of Y doped CuO was investigated by annealing the samples to 400 °C (as-prepared), 600 °C and 800 °C. X-ray diffraction measurements indicate that the synthesized nano crystallite consists of monoclinic CuO phase with impurity phase (Y2O3) of Y at elevated temperature. Scanning Electron Microscopy observations show that the particles are more agglomerated with the addition of Y in CuO. The presence of Y is evidenced by the metal oxide peak shift in FTIR spectra. The effect of annealing and the impurity phase formation of the dopant were observed by the merging of the metal oxide peaks. The optical absorption results show that the optical bandgap energy of Y:CuO nanocrystals were much less as compared to that of the undoped CuO particles. Doping CuO with Y has shifted the absorption edge and narrowing down the Eg due to the existence of excess number of electrons by the trivalent impurity in the conduction band. Increasing the dopant concentration and the annealing has led to the partial curing of copper vacancies which has widened the bandgap. Photoluminescence (PL) spectra at the room temperature showed a strong band edge emission, and thereby confirm an increase in the concentration of defects upon doping with respect to the undoped CuO.

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    J. Tranquada, B. Sternlieb, J. Axe, Y. Nakamura, S. Uchida, Nature 375(6532), 561 (1995)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, J. Mater. Sci. Mater. Electron. 27(7), 6918 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Li, H. Tang, Y. Wang, Z. Huang, J. Zhong, J. Mater. Sci. Mater. Electron. 28(3), 2353 (2016)CrossRefGoogle Scholar
  4. 4.
    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Mater. Sci. Semicond. Process. 17, 110–118 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Gao, J. Bao, G. Pan, H. Zhu, P. Huang, F. Wu, D. Song, J. Phys. Chem. B 108(18), 5547–5551 (2004)CrossRefGoogle Scholar
  6. 6.
    W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Phys. Lett. A 375(2), 180–182 (2010)CrossRefGoogle Scholar
  7. 7.
    V.S. Gurin, A.A. Alexeenko, A.V. Kaparikha, Mater. Lett. 65(15), 2442–2444 (2011)CrossRefGoogle Scholar
  8. 8.
    N. Ekthammathat, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 167, 266–269 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Liu, S. Yuan, H. Duan, S. Yin, Z. Tian, X. Zheng, S. Huo, C. Wang, Mater. Lett. 64(2), 192–194 (2010)CrossRefGoogle Scholar
  10. 10.
    Q.-J. Liu, N.-C. Zhang, Y.-Y. Sun, F.-S. Liu, Z.-T. Liu, Solid State Sci. 31, 37–45 (2014)CrossRefGoogle Scholar
  11. 11.
    T.M. Hammad, J.K. Salem, R.G. Harrison, Nano 4(04), 225–232 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, X. Shang, Vacuum 85(7), 744–748 (2011)CrossRefGoogle Scholar
  13. 13.
    I. Atribak, A. Bueno-López, A. García-García, J. Mol. Catal. A: Chem. 300(1), 103–110 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Gupta, N. Brahme, D.P. Bisen, J. Lumin. 155, 112–118 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T.B. Hadda, I. Warad, J. Mater. Environ. Sci. 4(5), 792–797 (2013)Google Scholar
  16. 16.
    J. Singh, G. Kaur, M. Rawat, J. Bio. Electron. Nanotechnol. 1(1), 9 (2016)Google Scholar
  17. 17.
    J. Maul, A. Brito, A. de Oliveira, S. Lima, M. Maurera, D. Keyson, A. Souza, I. Santos, J. Therm. Anal. Calorim. 106(2), 519–523 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Yang, R. Wang, L. Yang, J. Lang, M. Wei, M. Gao, X. Liu, J. Cao, X. Li, N. Yang, J. Alloys Compd. 509(8), 3606–3612 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Tan, Z. Fang, W. Chen, P. He, J. Alloys Compd. 509(21), 6321–6324 (2011)CrossRefGoogle Scholar
  20. 20.
    T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Mater. Sci. Eng. B. 162(3), 179–184 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Yogamalar, P.S. Venkateswaran, M.R. Benzigar, K. Ariga, A. Vinu, A.C. Bose, J. Nanosci. Nanotechnol. 12(1), 75–83 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Thirumoorthi, J.T.J. Prakash, Superlattices Microstruct. 85, 237–247 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Mohit, S. Rout, S. Parida, G. Singh, S. Sharma, S. Pradhan, I.W. Kim, Phys. B. 407(6), 935–942 (2012)CrossRefGoogle Scholar
  24. 24.
    M. George, A.M. John, S.S. Nair, P. Joy, M. Anantharaman, J. Magn. Magn. Mater. 302(1), 190–195 (2006)CrossRefGoogle Scholar
  25. 25.
    E. Simmons, Appl. Opt.14(6), 1380–1386 (1975)CrossRefGoogle Scholar
  26. 26.
    H. Praliaud, S. Mikhailenko, Z. Chajar, M. Primet, Appl. Catal. B 16(4), 359–374 (1998)CrossRefGoogle Scholar
  27. 27.
    H. ElBatal, A. Abdelghany, F. ElBatal, K.M. ElBadry, F. Moustaffa, Phys. B. 406(19), 3694–3703 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Pierson, D. Wiederkehr, A. Billard, Thin Solid Films 478(1), 196–205 (2005)CrossRefGoogle Scholar
  29. 29.
    G. Kliche, Z. Popovic, Phys. Rev. B 42(16), 10060 (1990)CrossRefGoogle Scholar
  30. 30.
    K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61(16), 11093 (2000)CrossRefGoogle Scholar
  31. 31.
    L.-J. Chen, G.-S. Li, L.-P. Li, J. Therm. Anal. Calorim. 91(2), 581–587 (2008)CrossRefGoogle Scholar
  32. 32.
    B. Sone, A. Diallo, X. Fuku, A. Gurib-Fakim, M. Maaza, Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.03.00 Google Scholar
  33. 33.
    P. Chand, A. Gaur, A. Kumar, Acta Metall. Sin. (Engl. Lett.) 27(2), 306–312 (2014)CrossRefGoogle Scholar
  34. 34.
    J.S.K. Arockiasamy, J. Irudayaraj, Ceram. Int. 42(5), 6198–6205 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Vimala Devi
    • 1
  • T. Selvalakshmi
    • 2
  • S. Sellaiyan
    • 3
  • P. Sahaya Murphin kumar
    • 4
  • S. Sankar
    • 1
  1. 1.Department of PhysicsMIT Campus, Anna UniversityChennaiIndia
  2. 2.Department of PhysicsThe Standard Fireworks Rajaratnam College for womenSivakasiIndia
  3. 3.Division of Applied PhysicsUniversity of TsukubaIbarakiJapan
  4. 4.Department of Applied Science and TechnologyAnna UniversityChennaiIndia

Personalised recommendations