Skip to main content
Log in

Combustion derived Y doped CuO nanoparticle: its structural, morphological and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we report Yttrium doped CuO nanoparticles by varying weight ratios as 0.2, 0.4 and 0.6 as wt% of Y synthesized using an energy-efficient and solution combustion method with glycine in use as a fuel. Structural and optical characterization of Y doped CuO was investigated by annealing the samples to 400 °C (as-prepared), 600 °C and 800 °C. X-ray diffraction measurements indicate that the synthesized nano crystallite consists of monoclinic CuO phase with impurity phase (Y2O3) of Y at elevated temperature. Scanning Electron Microscopy observations show that the particles are more agglomerated with the addition of Y in CuO. The presence of Y is evidenced by the metal oxide peak shift in FTIR spectra. The effect of annealing and the impurity phase formation of the dopant were observed by the merging of the metal oxide peaks. The optical absorption results show that the optical bandgap energy of Y:CuO nanocrystals were much less as compared to that of the undoped CuO particles. Doping CuO with Y has shifted the absorption edge and narrowing down the Eg due to the existence of excess number of electrons by the trivalent impurity in the conduction band. Increasing the dopant concentration and the annealing has led to the partial curing of copper vacancies which has widened the bandgap. Photoluminescence (PL) spectra at the room temperature showed a strong band edge emission, and thereby confirm an increase in the concentration of defects upon doping with respect to the undoped CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Tranquada, B. Sternlieb, J. Axe, Y. Nakamura, S. Uchida, Nature 375(6532), 561 (1995)

    Article  Google Scholar 

  2. Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, J. Mater. Sci. Mater. Electron. 27(7), 6918 (2016)

    Article  Google Scholar 

  3. J. Li, H. Tang, Y. Wang, Z. Huang, J. Zhong, J. Mater. Sci. Mater. Electron. 28(3), 2353 (2016)

    Article  Google Scholar 

  4. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    Article  Google Scholar 

  5. X. Gao, J. Bao, G. Pan, H. Zhu, P. Huang, F. Wu, D. Song, J. Phys. Chem. B 108(18), 5547–5551 (2004)

    Article  Google Scholar 

  6. W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Phys. Lett. A 375(2), 180–182 (2010)

    Article  Google Scholar 

  7. V.S. Gurin, A.A. Alexeenko, A.V. Kaparikha, Mater. Lett. 65(15), 2442–2444 (2011)

    Article  Google Scholar 

  8. N. Ekthammathat, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 167, 266–269 (2016)

    Article  Google Scholar 

  9. K. Liu, S. Yuan, H. Duan, S. Yin, Z. Tian, X. Zheng, S. Huo, C. Wang, Mater. Lett. 64(2), 192–194 (2010)

    Article  Google Scholar 

  10. Q.-J. Liu, N.-C. Zhang, Y.-Y. Sun, F.-S. Liu, Z.-T. Liu, Solid State Sci. 31, 37–45 (2014)

    Article  Google Scholar 

  11. T.M. Hammad, J.K. Salem, R.G. Harrison, Nano 4(04), 225–232 (2009)

    Article  Google Scholar 

  12. Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, X. Shang, Vacuum 85(7), 744–748 (2011)

    Article  Google Scholar 

  13. I. Atribak, A. Bueno-López, A. García-García, J. Mol. Catal. A: Chem. 300(1), 103–110 (2009)

    Article  Google Scholar 

  14. A. Gupta, N. Brahme, D.P. Bisen, J. Lumin. 155, 112–118 (2014)

    Article  Google Scholar 

  15. M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T.B. Hadda, I. Warad, J. Mater. Environ. Sci. 4(5), 792–797 (2013)

    Google Scholar 

  16. J. Singh, G. Kaur, M. Rawat, J. Bio. Electron. Nanotechnol. 1(1), 9 (2016)

    Google Scholar 

  17. J. Maul, A. Brito, A. de Oliveira, S. Lima, M. Maurera, D. Keyson, A. Souza, I. Santos, J. Therm. Anal. Calorim. 106(2), 519–523 (2011)

    Article  Google Scholar 

  18. J. Yang, R. Wang, L. Yang, J. Lang, M. Wei, M. Gao, X. Liu, J. Cao, X. Li, N. Yang, J. Alloys Compd. 509(8), 3606–3612 (2011)

    Article  Google Scholar 

  19. Y. Tan, Z. Fang, W. Chen, P. He, J. Alloys Compd. 509(21), 6321–6324 (2011)

    Article  Google Scholar 

  20. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Mater. Sci. Eng. B. 162(3), 179–184 (2009)

    Article  Google Scholar 

  21. R. Yogamalar, P.S. Venkateswaran, M.R. Benzigar, K. Ariga, A. Vinu, A.C. Bose, J. Nanosci. Nanotechnol. 12(1), 75–83 (2012)

    Article  Google Scholar 

  22. M. Thirumoorthi, J.T.J. Prakash, Superlattices Microstruct. 85, 237–247 (2015)

    Article  Google Scholar 

  23. K. Mohit, S. Rout, S. Parida, G. Singh, S. Sharma, S. Pradhan, I.W. Kim, Phys. B. 407(6), 935–942 (2012)

    Article  Google Scholar 

  24. M. George, A.M. John, S.S. Nair, P. Joy, M. Anantharaman, J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  Google Scholar 

  25. E. Simmons, Appl. Opt.14(6), 1380–1386 (1975)

    Article  Google Scholar 

  26. H. Praliaud, S. Mikhailenko, Z. Chajar, M. Primet, Appl. Catal. B 16(4), 359–374 (1998)

    Article  Google Scholar 

  27. H. ElBatal, A. Abdelghany, F. ElBatal, K.M. ElBadry, F. Moustaffa, Phys. B. 406(19), 3694–3703 (2011)

    Article  Google Scholar 

  28. J. Pierson, D. Wiederkehr, A. Billard, Thin Solid Films 478(1), 196–205 (2005)

    Article  Google Scholar 

  29. G. Kliche, Z. Popovic, Phys. Rev. B 42(16), 10060 (1990)

    Article  Google Scholar 

  30. K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61(16), 11093 (2000)

    Article  Google Scholar 

  31. L.-J. Chen, G.-S. Li, L.-P. Li, J. Therm. Anal. Calorim. 91(2), 581–587 (2008)

    Article  Google Scholar 

  32. B. Sone, A. Diallo, X. Fuku, A. Gurib-Fakim, M. Maaza, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.03.00

    Google Scholar 

  33. P. Chand, A. Gaur, A. Kumar, Acta Metall. Sin. (Engl. Lett.) 27(2), 306–312 (2014)

    Article  Google Scholar 

  34. J.S.K. Arockiasamy, J. Irudayaraj, Ceram. Int. 42(5), 6198–6205 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sellaiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimala Devi, L., Selvalakshmi, T., Sellaiyan, S. et al. Combustion derived Y doped CuO nanoparticle: its structural, morphological and optical properties. J Mater Sci: Mater Electron 29, 9387–9396 (2018). https://doi.org/10.1007/s10854-018-8971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8971-x

Navigation