Advertisement

Supramolecular self-assembled carbon nitride for the degradation of tetracycline hydrochloride

  • Dongbo Wang
  • Shi Li
  • Qingge Feng
Article
  • 131 Downloads

Abstract

Graphitic carbon nitride microspheres photocatalyst (CN-MCA) was prepared through supramolecular self-assembly with post-heating treatment, which starts from the combination of the raw materials melamine and cyanuric acid. The as-prepared samples were characterized in detail by X-ray diffraction, Fourier transform infrared spectroscopy, new high-resolution field-emission scanning electron microscopy, specific surface areas analysis, UV–Vis diffused reflectance spectrum, photoluminescence spectrum, and thermal analysis. The structural characterization results reveal that the as-prepared CN-MCA has the same chemical structure as CN-M, but appears as microspheres with nanoporous surfaces. Compared to the CN-M, CN-MCA microspheres exhibit higher specific surface areas, stronger optical absorption and lower PL intensity, which allow more active sites, more effective visible-light harvesting and more efficient migration rate of photogenerated charge. Consequently, we observed that CN-MCA microspheres exhibit higher photocatalytic activity in the photodegradation of tetracycline hydrochloride under visible light irradiation. Moreover, the degradation efficiency of tetracycline hydrochloric acid under 2 h of visible light irradiation was 80.54% when the dosage of CN-MCA was 1.0 g/L; the initial concentration of the tetracycline hydrochloride solution was 10 mg/L; and the initial pH was 7.

References

  1. 1.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Zheng, L.H. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 54, 12868 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2, 1596 (2012)CrossRefGoogle Scholar
  4. 4.
    D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew. Chem. Int. Ed. 126, 9394 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Cui, Y. Wang, H. Wang, F. Cao, F. Chen, Chin. J. Catal. 37, 1899 (2016)CrossRefGoogle Scholar
  6. 6.
    H.M. Zhao, C.M. Di, L. Wang, Y. Chun, Q.H. Xu, Microporous Mesoporous Mater. 208, 98 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Kailasam, J.D. Epping, A. Thomas, S. Losse, H. Junge, Energy Environ. Sci. 4, 4668 (2011)CrossRefGoogle Scholar
  8. 8.
    G.M. Whitesides, J. Mathias, C.T. Seto, Science 254, 1312 (1991)CrossRefGoogle Scholar
  9. 9.
    M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 135, 7118 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.S. Jun, E.Z. Lee, X.C. Wang, W.H. Hong, G.D. Stucky, A. Thomas, Adv. Funct. Mater. 23, 3661 (2013)CrossRefGoogle Scholar
  11. 11.
    Z. Tong, D. Yang, Y. Sun, Y. Nan, Z. Jiang, Small 12, 4093 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 14, 1455 (2012)CrossRefGoogle Scholar
  13. 13.
    K.I. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, J. Hazard. Mater. 260, 475 (2013)CrossRefGoogle Scholar
  14. 14.
    W. Cui, J.Y. Li, W.L. Cen, Y.J. Sun, S.C. Lee, F. Dong, J. Catal. 352, 353 (2017)CrossRefGoogle Scholar
  15. 15.
    G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, J. Mater. Chem. 22, 2721 (2012)CrossRefGoogle Scholar
  16. 16.
    F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Mater. Chem. 21, 15171 (2011)CrossRefGoogle Scholar
  17. 17.
    W. Cui, J.Y. Li, F. Dong, Y.J. Sun, G.M. Jiang, W.L. Cen, S.C. Lee, Z.B. Wu, Environ. Sci. Technol. 51, 10682 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Qiu, L. Gao, Chem. Commun. 21, 2378 (2003)CrossRefGoogle Scholar
  19. 19.
    X. Zhou, B. Jin, L. Li, F. Peng, H. Wang, H. Yu, Y. Fang, J. Mater. Chem. 22, 17900 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Chen, J. Chen, P. Qiu, F. Jiang, J. Funct. Mater. 45, 23049 (2014)Google Scholar
  21. 21.
    G.H. Dong, L.Z. Zhang, J. Mater. Chem. 22, 1160 (2012)CrossRefGoogle Scholar
  22. 22.
    J.G. Yu, S.H. Wang, B. Cheng, Z. Lin, F. Huang, Catal. Sci. Technol. 3, 1782 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Ishida, L. Chabanne, M. Antonietti, M. Shalom, Langmuir 30, 447 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15, 627 (1966)CrossRefGoogle Scholar
  25. 25.
    Q. Liang, Z. Li, Z. Huang, F. Kang, Q. Yang, Adv. Funct. Mater. 25, 6885 (2015)CrossRefGoogle Scholar
  26. 26.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26, 3894 (2010)CrossRefGoogle Scholar
  27. 27.
    G.M. Jiang, X.W. Li, M.N. Lan, T. Shen, X.S. Lv, F. Dong, S. Zhang, Appl. Catal. B 205, 532 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Appl. Catal. B 200, 330 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, H. Li, Appl. Catal. B 174–175, 445 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Chen, Q. Yang, Y. Zhong, H. An, J. Zhao, T. Xie, Q. Xu, X. Li, D. Wang, G. Zeng, Water Res. 101, 555 (2016)CrossRefGoogle Scholar
  31. 31.
    C.S. Pan, Y.F. Zhu, Environ. Sci. Technol. 44, 5570 (2010)CrossRefGoogle Scholar
  32. 32.
    W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, C. Sun, Appl. Catal. B 185, 242 (2016)CrossRefGoogle Scholar
  33. 33.
    Y.C. Deng, L. Tang, G.M. Zeng, J.J. Wang, Y.Y. Zhou, J.J. Wang, J. Tang, Y.N. Liu, B. Peng, F. Chen, J. Mol. Catal. A 421, 209 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Resources, Environment and MaterialsGuangxi UniversityNanningChina
  2. 2.Key Laboratory of Environmental ProtectionGuangxi UniversityNanningChina

Personalised recommendations