Sol–gel synthesized BiFeO3–Graphene nanocomposite as efficient electrode for supercapacitor application

  • S. Nayak
  • Ankur Soam
  • J. Nanda
  • C. Mahender
  • Mamraj Singh
  • Debananda Mohapatra
  • Rahul Kumar


In the present work, bismuth iron oxide–graphene composite has been explored as electrode material for electrochemical supercapacitor application. Bismuth iron oxide (BFO) nanoparticles, synthesized by sol–gel process, are mixed with the graphene sheets in a solution. The electrodes are prepared by coating the resulted slurry on stainless steel (SS) substrate, by drop casting process. The morphology and structure of the BFO–graphene composite are characterized by XRD, FIB-SEM, HRTEM and Raman spectroscopy, which show that the nanoparticles with diameter 100–200 nm are randomly distributed on and around the graphene sheets. The composite electrode exhibits significantly enhanced capacitance as compared to BFO. In this structure, the electrons generated by the surface based Faradaic reactions from the BFO nanoparticles can be transported by the graphene nanosheets toward the current collector. The electrochemical characteristic of the electrodes is investigated through cyclic voltammetry and charging/discharging process. The specific capacitance of the electrode measured at 5–100 mV/s was found to be 17–4 mF/cm2 which is comparable to the most commonly used metal oxide based electrode materials. It shows better cycling stability with 95% retention of capacitance after 2000 cycles.



I would like to thank Prof. V. S. Raja, Dept. of ME & MS, IIT Bombay for providing the electrochemical characterization facility. FIST facility (Dual beam FIB, Carl Zeiss Microscopy) in ME & MS department was also used for this work. I also acknowledge SAIF, IIT Bombay, Mumbai for HRTEM characterization.


  1. 1.
    R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)CrossRefGoogle Scholar
  2. 2.
    S.F. Tie, C. Wei, A review of energy sources and energy management system in electric vehicles. Renew. Sustain. Energy Rev. 20, 82–102 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Kuperman, I. Aharon, Battery—ultracapacitor hybrids for pulsed current loads: a review. Renew. Sustain. Energy Rev. 15, 981–992 (2011)CrossRefGoogle Scholar
  4. 4.
    J.R. Miller, A.F. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17, 53–57 (2008)Google Scholar
  5. 5.
    D.P. Dubal, G. Kim, Y. Kim, R. Holze, C.D. Lokhande, W.B. Kim, Supercapacitors based on flexible substrates: an overview. Energy Technol. 2, 325–341 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Lé, P. Gentile, G. Bidan, D. Aradilla, New electrolyte mixture of propylene carbonate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1114 TFSI) for high performance silicon nanowire (SiNW)-based supercapacitor applications. Electrochim. Acta 254, 368–374 (2017)CrossRefGoogle Scholar
  7. 7.
    M.K. Hota, Q. Jiang, Y. Mashraei, K.N. Salama, H.N. Alshareef, Fractal electrochemical microsupercapacitors. Adv. Electron. Mater. 3, 1700185 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010)CrossRefGoogle Scholar
  9. 9.
    L. Gurusamy, S. Anandan, J.J. Wu, Synthesis of reduced graphene oxide supported flower-like bismuth subcarbonates microsphere (Bi2O2CO3-RGO) for supercapacitor. Appl. Electrochim. Acta 244, 209–221 (2017)CrossRefGoogle Scholar
  10. 10.
    C.D. Lokhande, D.P. Dubal, O. Joo, Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 11, 255–270 (2017)CrossRefGoogle Scholar
  11. 11.
    Q.J. Le, T. Wang, D.N.H. Tran, F. Dong, Y.X. Zhang, D. Losic, Morphology-controlled MnO2 modified silicon diatoms for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 10856–10865 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Soam, N. Arya, A. Singh, R. Dusane, Fabrication of silicon nanowires based on-chip micro-supercapacitor. Chem. Phys. Lett. 678, 45–50 (2017)CrossRefGoogle Scholar
  13. 13.
    E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2423 (2010)CrossRefGoogle Scholar
  14. 14.
    A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)CrossRefGoogle Scholar
  15. 15.
    P. Chen, G. Shen, S. Sukcharoenchoke, C. Zhou, Flexible and transparent supercapacitor based on In 2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 94, 043113 (2009)CrossRefGoogle Scholar
  16. 16.
    A.L.M. Reddy, S. Ramaprabhu, Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J. Phys. Chem. C 111, 7727–7734 (2007)CrossRefGoogle Scholar
  17. 17.
    V. Khomenko, E. Frackowiak, F. Be, Performance of manganese oxide CNTs composites as electrode materials for electrochemical capacitors. J. Electrochem. Soc. 152, 229–235 (2005)Google Scholar
  18. 18.
    Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene—ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Soam, P. Kavle, A. Kumbhar, R.O. Dusane, Performance enhancement of micro-supercapacitor by coating of graphene on silicon nanowires at room temperature. Curr. Appl. Phys. 17, 68–71 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Wu, J. Zhou, L. Liang, L. Li, X. Zhu, Fabrication, characterization, properties, and applications of low-dimensional BiFeO3 nanostructures. J. Nanomater. 2014, 471485 (2014)Google Scholar
  21. 21.
    S. Nayak, C. Mahender, S. Ankur, J. Nanda, Structural and optical studies of BiFeO3@SiO2 core/shell nanoparticles. Mater. Res. Express 4, 105029 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Di, H. Yang, T. Xian, X. Chen, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization. Materials 10, 1118 (2017)CrossRefGoogle Scholar
  23. 23.
    P. Banerjee, A.F. Jr, Influence of Y and Co co-doping in the multiferroic behaviors of BiFeO3 ceramics. J. Mater. Sci. 28, 8562–8568 (2017)Google Scholar
  24. 24.
    A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustain. Chem. Eng. 3, 2254–2263 (2015)CrossRefGoogle Scholar
  25. 25.
    C. Lokhande, T. Gujar, R.S. Mane, S.H. Han, Electrochemical supercapacitor application of pervoskite thin films. Electrochem. Commun. 9, 1805–1809 (2007)CrossRefGoogle Scholar
  26. 26.
    V.V. Jadhav, M.K. Zate, S. Liu, M. Naushad, R.S. Mane, K.N. Hui, S.H. Han, Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application. Appl. Nanosci. 6, 511–519 (2016)CrossRefGoogle Scholar
  27. 27.
    M.P. Tereza, A.K. Thapa, A. Sherehiy, J.B. Jasinski, J.S. Jangam, Incommensurate graphene foam as a high capacity lithium intercalation anode. Sci. Rep. 7, 39944 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Priyadharsini, A. Pradeep, B. Sathyamoorthy, G. Chandrasekaran, Enhanced multiferroic properties in La and Ce. J. Phys. Chem. Solids 75, 797–802 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Sun, H. Chen, C. Song, F. Jiang, X. Wang, Y. Fu, Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 3, 4332–4340 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 032183 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654–668 (2010)CrossRefGoogle Scholar
  32. 32.
    B. Senthilkumar, R.K. Selvan, L. Vasylechko, M. Minakshi, Synthesis, crystal structure and pseudocapacitor electrode properties of γ-Bi2MoO6 nanoplates. Solid State Sci. 35, 18–27 (2014)CrossRefGoogle Scholar
  33. 33.
    W. Liu, C. Lu, X. Wang, R.Y. Tay, B.K. Tay, High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 9, 1528–1542 (2015)CrossRefGoogle Scholar
  34. 34.
    B. Sarma, A.L. Jurovitzki, Y.R. Smith, S.K. Mohanty, M. Misra, Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode. ACS Appl. Mater. Interfaces 5, 1688–1697 (2013)CrossRefGoogle Scholar
  35. 35.
    W.G. Pell, B.E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge. J. Power Sources 96, 57–67 (2001)CrossRefGoogle Scholar
  36. 36.
    W.G. Pell, B.E. Conway, N. Marincic, Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 491, 9–21 (2000)CrossRefGoogle Scholar
  37. 37.
    R.D. Levie, On porous electrodes in electrolyte solutions: I. capacitance effects. Electrochim. Acta 8, 751–780 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Nayak
    • 1
  • Ankur Soam
    • 2
  • J. Nanda
    • 1
  • C. Mahender
    • 2
  • Mamraj Singh
    • 3
  • Debananda Mohapatra
    • 4
  • Rahul Kumar
    • 5
  1. 1.Department of PhysicsSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia
  2. 2.Department of Mechanical EngineeringSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia
  3. 3.Department of PhysicsUniversity of RajasthanJaipurIndia
  4. 4.Department of Chemical ScienceTata Institute of Fundamental Research (TIFR)MumbaiIndia
  5. 5.National Centre for Photovoltaic Research and Education (NCPRE)Indian Institute of Technology BombayMumbaiIndia

Personalised recommendations