Enhancing the structural, optical and magnetic properties of Cu2O films deposited using a SILAR technique through Fe-doping

  • S. Satheeskumar
  • S. Vadivel
  • K. Dhanabalan
  • A. Vasuhi
  • A. T. Ravichandran
  • K. Ravichandran
Article
  • 17 Downloads

Abstract

Undoped and Ferrous (Fe)-doped Cu2O thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction method. The variation in the concentration of Fe has significant impact on the final film properties, Fe doping with 5 wt% exhibited major property improvements compared with undoped and Fe doped films. The structural, optical, morphological, magnetic properties and atomic force microscope of the films were systematically investigated. The X-ray diffraction analysis showed that all the films had good crystalline quality and the preferential orientation along (111) plane. Optical studies show that the transmittance and optical band-gap values are maximum (2.5 eV) for the Fe doping level of 5 wt%. The relative errors are calculated for crystallite size and optical energy band gap values. The photoluminescence study confirms the presence of various defects in the Cu2O matrix. The Fourier transform infrared results confirmed the presence of expected compounds in the samples. The field emission-scanning electron microscope images indicate that there is a gradual decrease in the grain-size with increase in the Fe doping level and a flower-like structure is obtained in the maximum doping level of Fe. The high resolution transition electron microscope reveals single-crystal nature. Magnetic measurements showed that undoped Cu2O films exhibit diamagnetic behavior and at the maximum (5 wt%) Fe doping level, the films behave as anti-ferromagnetic material. The atomic force microscope reveals that the smoothness of the film surface increases at the maximum doping of Fe concentration.

References

  1. 1.
    K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, L. McMillon, J. McNatt, Sol. Energy Mater. Sol. Cells 108, 230 (2013)CrossRefGoogle Scholar
  3. 3.
    F. Bayansal, T. Taşköprü, B. Şahin, H.A. Çetinkara, Metall. Mater. Trans. A 45, 3670 (2014)CrossRefGoogle Scholar
  4. 4.
    P.A. Praveenjanantha, L.N.L. Perera, K.M.D.C. Jayathilaka, J.K.D.S. Jayanetti, D.P. Dissanayaka, W.P. Siripala, Process. Tech. Sess. 25, 70 (2009)Google Scholar
  5. 5.
    V. Georgieva, M. Ristov, Sol. Energy Mater. Sol. Cells 73, 67 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Han, M. Tao, Sol. Energy Mater. Sol. Cells 93, 153 (2009)CrossRefGoogle Scholar
  7. 7.
    X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547 (2004)CrossRefGoogle Scholar
  8. 8.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  9. 9.
    S.N. Kale, S.B. Ogale, S.R. Shinde, M. Sahasrabuddhe, V. Kulkarni, R. Greene, T. Venkatesan, Appl. Phys. Lett. 82, 2100 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Beekmana, J. Salvadorb, X. Shic, G.S. Nolasa, J. Yangb, J. Alloys Compd. 489, 336 (2010)CrossRefGoogle Scholar
  11. 11.
    P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Chem. Commun. 12, 1069 (1999)CrossRefGoogle Scholar
  12. 12.
    S.H. Jeong, E.S. Aydil, J. Cryst. Growth 311, 4188 (2009)CrossRefGoogle Scholar
  13. 13.
    A.N. Banerjee, S. Nandy, C.K. Ghosh, K.K. Chattooadhyay, Thin Solid Films 515, 7324 (2007)CrossRefGoogle Scholar
  14. 14.
    M.M. Momeni, Z. Nazari, Ceram. Int. 42, 8691 (2016)CrossRefGoogle Scholar
  15. 15.
    N.J. Begum, R. Mohan, K. Ravichandran, Super Lattice Microstruct. 53, 89 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Jiang, L. Shao, J. Zhang, J. Chen, Acta Metall. Sin. (Engl. Lett.) 27, 689 (2014)CrossRefGoogle Scholar
  17. 17.
    A.T. Ravichandran, K. Dhanabalan, S. Valanarasu, A. Vasuhi, A. Kathalingam, J. Mater. Sci.: Mater. Electron. (2014).  https://doi.org/10.1007/s10854-014-2483-0 Google Scholar
  18. 18.
    V. Senthamilselvi, K. Saravanakumar, R. Anandhi, A.T. Ravichandran, K. Ravichandran, Optoelectron. Adv. Mater. Rapid Commun. 5, 1072 (2011)Google Scholar
  19. 19.
    P.-H. Hsieh, Y.-M. Lu, W.-S. Hwang, J.-J. Yeh, W.-L. Jang, Surf. Coat. Technol. 205, S206 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Benramache, B. Benhaoua, Open Phys. 14, 714 (2016)CrossRefGoogle Scholar
  21. 21.
    N. Ekthammathat, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 277, 211 (2013)CrossRefGoogle Scholar
  22. 22.
    R.P. Pal Singh, I.S. Hudiara, S. Panday, P. Kumar, S.B. Rana, Int. J. Nanoelectron. Mater. 9, 1 (2016)Google Scholar
  23. 23.
    A.T. Ravichandran, K. Dhanabalan, K. Ravichandran, R. Mohan, K. Karthika, A. Vasuhi, B. Muralidharan, Acta Metall. Sin. (Engl. Lett.) 28, 1041 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Satheeskumar
    • 1
  • S. Vadivel
    • 2
  • K. Dhanabalan
    • 3
  • A. Vasuhi
    • 4
  • A. T. Ravichandran
    • 5
  • K. Ravichandran
    • 6
  1. 1.Department of PhysicsK.S.R. Institute for Engineering and TechnologyNamakkalIndia
  2. 2.Department of PhysicsPaavai Engineering College (Autonomous)NamakkalIndia
  3. 3.Post Graduate and Research Department of PhysicsJ.J. College of Arts and Science (Autonomous)PudukkottaiIndia
  4. 4.Department of PhysicsH.H. The Rajah’s College (Autonomous)PudukkottaiIndia
  5. 5.Post Graduate and Research Department of PhysicsNational College (Autonomous)TiruchirappalliIndia
  6. 6.Post Graduate and Research Department of PhysicsA.V.V.M. Sri Pushpam College (Autonomous)ThanjavurIndia

Personalised recommendations