Skip to main content
Log in

Enhancing the structural, optical and magnetic properties of Cu2O films deposited using a SILAR technique through Fe-doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Ferrous (Fe)-doped Cu2O thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction method. The variation in the concentration of Fe has significant impact on the final film properties, Fe doping with 5 wt% exhibited major property improvements compared with undoped and Fe doped films. The structural, optical, morphological, magnetic properties and atomic force microscope of the films were systematically investigated. The X-ray diffraction analysis showed that all the films had good crystalline quality and the preferential orientation along (111) plane. Optical studies show that the transmittance and optical band-gap values are maximum (2.5 eV) for the Fe doping level of 5 wt%. The relative errors are calculated for crystallite size and optical energy band gap values. The photoluminescence study confirms the presence of various defects in the Cu2O matrix. The Fourier transform infrared results confirmed the presence of expected compounds in the samples. The field emission-scanning electron microscope images indicate that there is a gradual decrease in the grain-size with increase in the Fe doping level and a flower-like structure is obtained in the maximum doping level of Fe. The high resolution transition electron microscope reveals single-crystal nature. Magnetic measurements showed that undoped Cu2O films exhibit diamagnetic behavior and at the maximum (5 wt%) Fe doping level, the films behave as anti-ferromagnetic material. The atomic force microscope reveals that the smoothness of the film surface increases at the maximum doping of Fe concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013)

    Article  Google Scholar 

  2. L. Zhang, L. McMillon, J. McNatt, Sol. Energy Mater. Sol. Cells 108, 230 (2013)

    Article  Google Scholar 

  3. F. Bayansal, T. Taşköprü, B. Şahin, H.A. Çetinkara, Metall. Mater. Trans. A 45, 3670 (2014)

    Article  Google Scholar 

  4. P.A. Praveenjanantha, L.N.L. Perera, K.M.D.C. Jayathilaka, J.K.D.S. Jayanetti, D.P. Dissanayaka, W.P. Siripala, Process. Tech. Sess. 25, 70 (2009)

    Google Scholar 

  5. V. Georgieva, M. Ristov, Sol. Energy Mater. Sol. Cells 73, 67 (2002)

    Article  Google Scholar 

  6. K. Han, M. Tao, Sol. Energy Mater. Sol. Cells 93, 153 (2009)

    Article  Google Scholar 

  7. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547 (2004)

    Article  Google Scholar 

  8. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  9. S.N. Kale, S.B. Ogale, S.R. Shinde, M. Sahasrabuddhe, V. Kulkarni, R. Greene, T. Venkatesan, Appl. Phys. Lett. 82, 2100 (2003)

    Article  Google Scholar 

  10. M. Beekmana, J. Salvadorb, X. Shic, G.S. Nolasa, J. Yangb, J. Alloys Compd. 489, 336 (2010)

    Article  Google Scholar 

  11. P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Chem. Commun. 12, 1069 (1999)

    Article  Google Scholar 

  12. S.H. Jeong, E.S. Aydil, J. Cryst. Growth 311, 4188 (2009)

    Article  Google Scholar 

  13. A.N. Banerjee, S. Nandy, C.K. Ghosh, K.K. Chattooadhyay, Thin Solid Films 515, 7324 (2007)

    Article  Google Scholar 

  14. M.M. Momeni, Z. Nazari, Ceram. Int. 42, 8691 (2016)

    Article  Google Scholar 

  15. N.J. Begum, R. Mohan, K. Ravichandran, Super Lattice Microstruct. 53, 89 (2013)

    Article  Google Scholar 

  16. X. Jiang, L. Shao, J. Zhang, J. Chen, Acta Metall. Sin. (Engl. Lett.) 27, 689 (2014)

    Article  Google Scholar 

  17. A.T. Ravichandran, K. Dhanabalan, S. Valanarasu, A. Vasuhi, A. Kathalingam, J. Mater. Sci.: Mater. Electron. (2014). https://doi.org/10.1007/s10854-014-2483-0

    Google Scholar 

  18. V. Senthamilselvi, K. Saravanakumar, R. Anandhi, A.T. Ravichandran, K. Ravichandran, Optoelectron. Adv. Mater. Rapid Commun. 5, 1072 (2011)

    Google Scholar 

  19. P.-H. Hsieh, Y.-M. Lu, W.-S. Hwang, J.-J. Yeh, W.-L. Jang, Surf. Coat. Technol. 205, S206 (2010)

    Article  Google Scholar 

  20. S. Benramache, B. Benhaoua, Open Phys. 14, 714 (2016)

    Article  Google Scholar 

  21. N. Ekthammathat, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 277, 211 (2013)

    Article  Google Scholar 

  22. R.P. Pal Singh, I.S. Hudiara, S. Panday, P. Kumar, S.B. Rana, Int. J. Nanoelectron. Mater. 9, 1 (2016)

    Google Scholar 

  23. A.T. Ravichandran, K. Dhanabalan, K. Ravichandran, R. Mohan, K. Karthika, A. Vasuhi, B. Muralidharan, Acta Metall. Sin. (Engl. Lett.) 28, 1041 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dhanabalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheeskumar, S., Vadivel, S., Dhanabalan, K. et al. Enhancing the structural, optical and magnetic properties of Cu2O films deposited using a SILAR technique through Fe-doping. J Mater Sci: Mater Electron 29, 9354–9360 (2018). https://doi.org/10.1007/s10854-018-8966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8966-7

Navigation