Advertisement

Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties

  • J. Duraimurugan
  • G. Suresh Kumar
  • M. Venkatesh
  • P. Maadeswaran
  • E. K. Girija
Article

Abstract

We report the facile synthesis of zinc oxide (ZnO) nanostructures with different sizes and morphologies by a rapid microwave assisted synthesis using ethylenediaminetetraacetic acid (EDTA) and/or trisodium citrate as chelating agents and their characterization. The obtained ZnO nanostructures having hexagonal Wurtzite structure with different morphologies. With the aid of EDTA and/or trisodium citrate, flowers, flakes, solid spheres and porous spheres were obtained by controlling the crystal growth habit and the concentration of ZnO growth units under microwave irradiation. The optical behaviour was analyzed using UV–Vis spectroscopic technique which indicates that the prepared ZnO nanostructures exhibit band gap between 3.27 and 3.37 eV due to potential fluctuations in electronic band structure of ZnO owing to surface-related defects and/or adsorbed species.

Notes

Acknowledgements

G. Suresh Kumar would like to express his sincere thanks to University Grant Commission, India for financial support through minor research project scheme [File No: 4-4/2015-16 (MRP/UGC SERO)]. The authors express their special thanks to STIC, Cochin, India for providing TEM and UV-DRS facilities for characterizing the samples.

References

  1. 1.
    C. Klingshirn, ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide–from synthesis to application: a review. Materials 7, 2833–2881 (2014)CrossRefGoogle Scholar
  3. 3.
    C.W. Litton, D.C. Reynolds, T.C. Collins, Zinc Oxide Materials for Electronic and optoelectronic device applications (Wiley, New York, 2011)CrossRefGoogle Scholar
  4. 4.
    E. Guziewicz, K. Kopalko, G. Łuka, M.I. Łukasiewicz, T. Krajewski, B.S. Witkowski, S. Gierałtowska, Zinc oxide for electronic, photovoltaic and optoelectronic applications. Low Temp. Phys. 37, 235 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Pimentel, J. Rodrigues, P. Duarte, D. Nunes, F.M. Costa, T. Monteiro, R. Martins, E. Fortunato, Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J. Mater. Sci. 50, 5777–5787 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Krishnakumar, R. Jayaprakash, N. Pinna, N. Donato, A. Bonavita, G. Micali, G. Neri, CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens. Actuators B 143, 198–204 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Petrović, M. Ristić, S. Musić, The effect of sodium polyanethol sulfonate on the precipitation of zinc oxide. J. Alloys Compd. 694, 1331–1337 (2017)CrossRefGoogle Scholar
  8. 8.
    Z. Li, Y. Fang, L. Peng, D. Pan, M. Wu, EDTA-assisted synthesis of rose-like ZnO architectures. Cryst. Res. Technol. 45, 1083–1086 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Wang, Y. Gao, L. Wang, P. Li, Morphology regulation, structural, and photocatalytic properties of ZnO hierarchical microstructures synthesized by a simple hydrothermal method. Phys. Status Solidi A 214, 1600876 (2017)CrossRefGoogle Scholar
  10. 10.
    Y.A. Sumanth, R.A. Sujatha, S. Mahalakshmi, P.C. Karthika, S. Nithiyanantham, S. Saravanan, M. Azagiri, Synthesis and characterization of nanophase zinc oxide materials. J. Mater. Sci.: Mater. Electron. 27, 1616–1621 (2016)Google Scholar
  11. 11.
    J. Huang, C. Xia, L. Cao, X. Zeng, Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater. Sci. Eng. B 150, 187–193 (2008)CrossRefGoogle Scholar
  12. 12.
    F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method. J. Alloys Compd. 465, 14–19 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Cho, S. Jung, K. Lee, Morphology controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J. Phys. Chem. C 112, 12769–12776 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Cho, J. Jang, S. Jung, B.R. Lee, E. Oh, K. Lee, Precursor effects of citric acid and citrates on ZnO crystal formation. Langmuir 25, 3825–3831 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Venkatesh, G.S. Kumar, S. Viji, S. Karthi, E.K. Girija, Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets. Mod. Electron. Mater. 2, 74–78 (2016)CrossRefGoogle Scholar
  16. 16.
    G.S. Kumar, J. Akbar, R. Govindan, E.K. Girija, M. Kanagaraj, A novel rhombohedron-like nickel ferrite nanostructure: microwave combustion synthesis, structural characterization and magnetic properties. J. Sci.: Adv. Mater. Dev. 1, 282–285 (2016)Google Scholar
  17. 17.
    I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358–1374 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114, 6462–6555 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Prakash, G. Neri, A. Bonavita, E.R. Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J. Mater. Sci.: Mater. Electron. 26, 4913–4921 (2015)Google Scholar
  20. 20.
    X. Zhao, L. Qi, Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal. Nanotech. 23, 235604 (2012)CrossRefGoogle Scholar
  21. 21.
    O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D: Appl. Phys. 42, 225305 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Köseoğlua, A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets. Ceram. Inter. 40, 4673–4679 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aananda, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Tong, Y. Liu, H. Rong, L. Gong, Microwave-assisted synthesis of hierarchical ZnO nanostructures. Mater. Lett. 112, 5–7 (2013)CrossRefGoogle Scholar
  25. 25.
    W. Wang, Y. Zhu, Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun. 7, 1003–1005 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Ma, Y. Zhu, G. Cheng, Y. Huang, Microwave synthesis and characterization of ZnO with various morphologies. Mater. Lett. 62, 507–510 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Cao, B. Liu, R. Huang, Z. Xia, S. Ge, Flash synthesis of flower-like ZnO nanostructures by microwave-induced combustion process. Mater. Lett. 65, 160–163 (2011)CrossRefGoogle Scholar
  28. 28.
    N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, Y. Mortazavi, Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol. Sens. Actuators B 156, 737–742 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Debbarma, S. Das, M. Saha, Effect of reducing agents on the structure of zinc oxide under microwave irradiation. Adv. Manufact. 1, 183–186 (2013)CrossRefGoogle Scholar
  30. 30.
    M.L.D. Peralta, J.G. Serrano, U. Pal, Morphology defined ZnO nanostructures through microwave assisted chemical synthesis: growth mechanism, defect structure, and emission behaviours. Adv. Sci. Lett. 6, 159–166 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Das, K. Dutta, A. Pramanik, Morphology control of ZnO with citrate: a time and concentration dependent mechanistic insight. Cryst. Eng. Comm. 15, 6349–6358 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsK.S. Rangasamy College of Arts and Science (Autonomous)TiruchengodeIndia
  2. 2.Department of Energy StudiesPeriyar UniversitySalemIndia
  3. 3.Department of PhysicsPeriyar UniversitySalemIndia

Personalised recommendations