Regeneration cathode material mixture from spent lithium iron phosphate batteries

  • Lihua Wang
  • Jian Li
  • Hongming Zhou
  • Zuqiong Huang
  • Shengdong Tao
  • Bingkun Zhai
  • Liangqin Liu
  • Leshan Hu
Article
  • 24 Downloads

Abstract

Cathode materials mixture (LiFePO4/C and acetylene black) is recycled and regenerated by using a green and simple process from spent lithium iron phosphate batteries (noted as S-LFPBs). Recovery cathode materials mixture (noted as Recovery-LFP) and Al foil were separated according to their density by direct pulverization without acid/alkali leaching for the first time. Subsequently, Recovery-LFP is further directly regenerated with solid state reaction and reused for lithium ion battery without adding acetylene black at the first time. Compared with recovery material, regeneration cathode materials mixture (noted as regeneration-LFP) displays excellent electrochemical performances, which delivers a discharge capacity of 129.43 mAh g−1 in the first and maintains 120.32 mAh g−1 with a high capacity retention rate of 92.96% after 1000 cycles at 0.5C through 18,650 battery testing. It is concluded that the regeneration material can be reused as cathode materials for lithium batteries.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Number 51371198); and the Natural Science Foundation of Hunan provincial (Grant Number 2017JJ2168).

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    X.F. Tu, Y.K. Zhou, X.H. Tian, Y.J. Song, C.J. Deng, H.X. Zhu, Electrochim. Acta 222, 64–73 (2016)CrossRefGoogle Scholar
  2. 2.
    J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001)CrossRefGoogle Scholar
  3. 3.
    J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587–603 (2010)CrossRefGoogle Scholar
  4. 4.
    K.E. Aifantis, S.A. Hackney, J.P. Dempsey, J. Power Sources 165, 874–879 (2007)CrossRefGoogle Scholar
  5. 5.
    B. Kang, G. Ceder, Nat. Lett. 458, 190–193 (2009)CrossRefGoogle Scholar
  6. 6.
    C. Delmas, M. Maccario, L. Croguennec, F.L. Cras, F. Weill, Nature 7, 665–671 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Bao, L.L. Li, G. Xu, J.W. Wang, R.Y. Zhao, G. Shen, G.R. Han, S.X. Zhou, Electrochim. Acta 222, 685–692 (2016)CrossRefGoogle Scholar
  8. 8.
    X.H. Tian, Y.K. Zhou, G. Wu, P.C. Wang, J. Chen, Electrochim. Acta 229, 316–324 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Ordoñez, E.J. Gago, A. Girard, Renew. Sust. Energy Rev. Renew. 60, 195–205 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Zhang, Y.Q. He, F.F. Wang, L.H. Ge, X.N. Zhu, H. Li, Waste Manag. 34, 1051–1058 (2014)CrossRefGoogle Scholar
  11. 11.
    X.H. Zheng, W.F. Gao, X.H. Zhang, M.M. He, X. Lin, H.B. Cao, Y. Zhang, Z. Sun, Waste Manag. 60, 680–688 (2017)CrossRefGoogle Scholar
  12. 12.
    G.R. Nayaka, K.V. Pai, J. Manjanna, S.J. Keny, Waste Manag. 51, 234–238 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Yang, G.X. Xi, J. Electron. Mater. 45, 301–306 (2016)CrossRefGoogle Scholar
  14. 14.
    V.C.B. Pegoretti, P.V.M. Dixini, P.C. Smecellato, S.R. .Biaggio, M.B.J.G. Freitas, Mater. Res. Bull. 86, 5–9 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Li, R.J. Chen, X.X. Zhang, F. Wu, J. Ge, M. Xie, Chin. Sci. Bull. 57, 4188–4194 (2012)CrossRefGoogle Scholar
  16. 16.
    D.C. Bian, Y.G. Sun, S. Li, Y. Tian, Z.H. Yang, X.M. Fan, W.X. Zhang, Electrochim. Acta 190, 134–140 (2016)CrossRefGoogle Scholar
  17. 17.
    X.L. Li, J. Zhang, D.W. Song, J.S. Song, L.Q. Zhang, J. Power Sources 345, 78–84 (2017)CrossRefGoogle Scholar
  18. 18.
    X.G. Teng, F.Q. Li, P.H. Ma, Q.D. Ren, S.Y. Li, Thermochim. Acta 436, 30–34 (2005)CrossRefGoogle Scholar
  19. 19.
    K. Kanamura, H. Tamura, S. Shiraishi, Z.I. Takehare, Electrochim. Acta 40, 913–921 (1995)CrossRefGoogle Scholar
  20. 20.
    G.H. Qin, Q.Q. Wu, J. Zhao, Q.Q. Ma, C.Y. Wang, J. Power Sources 248, 588–595 (2014)CrossRefGoogle Scholar
  21. 21.
    Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Power Sources 189, 256–262 (2009)CrossRefGoogle Scholar
  22. 22.
    G.H. Qin, Q.Q. Ma, C.Y. Wang, Electrochim. Acta 115, 407–415 (2014)CrossRefGoogle Scholar
  23. 23.
    L. Li, A.O. Raji, J.M. Tour, Adv. Mater. 43, 6298–6302 (2013)CrossRefGoogle Scholar
  24. 24.
    Y.Q. Zhang, M.M. Jia, H.Y. Gao, J.G. Yu, L.L. Wang, Y.S. Zou, F.M. Qin, Y.N. Zhao, Electrochim. Acta 184, 32–39 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Hunan Zhengyuan Institute for Energy Storage Materials and DevicesChangshaChina

Personalised recommendations