Structure and properties of (K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3 piezoelectric ceramics doped by CuO

  • Qiyi Yin
  • Chengze Wang
  • Yu Wang
  • Shaobo Li
  • Quanzheng Zhang
  • Jie Yang
  • Changan Tian


Low-temperature sintering technology can control the volatilization of sodium and potassium ions during high-temperature preparation to obtain excellent physical properties of ceramics. In this research, we used the traditional ceramic preparation technology. KNN-based lead-free piezoelectric ceramics were prepared for the first time at home and abroad by using CuO and Na2O as collective additives under low sintering temperature (1020 °C) conditions. X-ray diffraction, scanning electron microscopy, and other modern test analyses show that KNANTC ceramics can form a pure perovskite structure of tetragonal phase in the total research range when 0.01 mol Na2O is used as a supplement to the A position of KNN piezoelectric ceramics. A moderate amount of CuO doping can simultaneously enhance liquid-phase sintering, promote grain growth, improve the density of ceramics, and achieve excellent electrical properties. The test results of KNANTC piezoelectric ceramics show good electrical properties when x = 0.035, that is, d33 = 343 pC/N, kp = 49%, εr = 1382, tan δ = 1.1%, Pr = 24.9 µC/cm2, EC = 1.92 kV/mm, and Tc = 306 °C. These results indicate that KNANTC-x is a promising lead-free piezoelectric ceramic material that can gradually replace the traditional PZT-based piezoelectric ceramics in the future.



This work is supported by the Natural Science Foundation of Anhui Province (No. 1708085ME112), the Natural Science Foundation of the Education Department of Anhui Province (Nos. KJ2017A533, KJ2017A535, and KJ2015B1105906), the College Students Maker Laboratory Construction Plan of Anhui Province (No. 2016ckjh161), the Talent Research Foundation of Hefei University (No. 16-17RC09), the Outstanding Youth Talent Foundation of Hefei University (Nos. 16YQ04RC and 16YQ05RC), and the College Students’ Innovation and Entrepreneurship Training Program (Nos. 201611059029, 201611059030, 201611059085, 201611059088, 201611059096, 201611059102, 201611059107, 201611059119, 201611059120, and 201611059122).


  1. 1.
    H.Q. Wang, Y.J. Dai, Z.R. Shen, X.W. Zhang, J. Eur. Ceram. Soc. 32, 1481 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Su, R.Z. Zuo, X.H. Wang, L.T. Li, Mater. Res. Bull. 45, 124 (2010)CrossRefGoogle Scholar
  3. 3.
    H.Q. Wang, D.S. Ruan, X.W. Zhang, Y.J. Dai, Curr. Appl. Phys. 12, 504 (2012)CrossRefGoogle Scholar
  4. 4.
    E.D. Yilmaz, H.E. Mgbemere, H. Özcoban, R.P. Fernandes, G.A. Schneider, J. Eur. Ceram. Soc. 32, 3339 (2012)CrossRefGoogle Scholar
  5. 5.
    J.J. Zhou, J.F. Li, K. Wang, X.W. Zhang, J. Mater. Sci. 46, 5111 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Bathelt, T. Soller, K. Benkert, C. Schuh, A. Roosen, J. Eur. Ceram. Soc. 32, 3767 (2012)CrossRefGoogle Scholar
  7. 7.
    W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, J. Mater. Sci. 46, 6871 (2011)CrossRefGoogle Scholar
  8. 8.
    J. Fu, R.Z. Zuo, Y. Liu, J. Alloys Compd. 493, 197 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, S. Yang, D. Kong, B. Zhang, Y. Zhang, J. Eur. Ceram. Soc. 31, 795 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Du, G.Z. Zang, X.J. Yi, Z.J. Xu, R.Q. Chu, C.L. Ban, Y.Y. Wei, P.P. Zhao, Mater. Lett. 79, 89 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Zhao, R. Huang, R. Liu, H. Zhou, Mater. Lett. 84, 52 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Fu, D. Lin, Q. Zheng, X. Wu, L. Wu, H. Sun, Y. Wan, X. Fan, C. Xu, Curr. Appl. Phys. 12, 1523 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Wu, D. Xiao, J. Wu, J. Li, J. Zhu, B. Zhang, Ceram. Int. 38, 2277 (2012)CrossRefGoogle Scholar
  14. 14.
    P. Palei, P. Sonia, Kumar, J. Phys. Chem. Solids 73, 827 (2012)CrossRefGoogle Scholar
  15. 15.
    F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D. Hall, J. Eur. Ceram. Soc. 31, 569 (2011)CrossRefGoogle Scholar
  16. 16.
    H.E. Mgbemere, M. Hinterstein, G.A. Schneider, J. Appl. Crystallogr. 44, 1080 (2011)CrossRefGoogle Scholar
  17. 17.
    H.E. Mgbemere, R.P. Fernandes, M. Hinterstein, G.A. Schneider, Z. Kristallogr. 226, 138 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, S. Yang, D. Kong, B.P. Zhang, Y. Zhang, J. Eur. Ceram. Soc. 31, 795 (2011)CrossRefGoogle Scholar
  19. 19.
    J.G. Wu, T. Wang, X.J. Cheng, X.P. Wang, B.Y. Zhang, J.G. Zhu, D.Q. Xiao, J. Alloys Compd. 576, 299 (2013)CrossRefGoogle Scholar
  20. 20.
    Q.Y. Yin, Z.Q. Sun, M. Zhang, G. He, Y. Chen, Q. Wang, M.Z. Yan, J. Alloys Compd. 622, 132 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, J. Wu, D. Xiao, J. Zhu, P. Yu, L. Wu, X. Li, J. Alloys Compd. 462, 310 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Materials EngineeringHefei UniversityHefeiPeople’s Republic of China

Personalised recommendations