Polypyrrole coated knitted fabric for robust wearable sensor and heater

  • Dandan Hao
  • Bi Xu
  • Zaisheng Cai


Nowadays, there has been tremendous interest in multifunctional and smart textiles to meet the pressing demand for new and innovative applications such as personal thermal and healthcare management. Herein, we present a wearable sensor and heater by in situ polymerization of pyrrole on the knitted cellulose fabric. The knitted fabric coated with electrically conductive polypyrrole (PPy) exhibits an electrical conductivity of 303 Ω sq−1. The PPy-cotton knitted fabric can be utilized as the strain sensor because of its high sensitivity to different motion activities. Meanwhile, the PPy-cotton knitted fabric can also act as a wearable heater due to Joule heating effect under a low voltage. Additional non-wettable treatment onto PPy-cotton fabric can efficiently improve the protection against environmental factors. The combination of stretchable knitted fabric with conductive PPy offers a low-cost and efficient solution for multifunctional wearable electronics.



This work was financially supported by the Fundamental Research Funds for the Central Universities and the National Nature Science Foundation of China (51502035).


  1. 1.
    Y. Huang, Y. Wang, L. Gao, X. He, P. Liu, C. Liu, J. Mater. Sci.: Mater. Electron. 28, 1 (2016)Google Scholar
  2. 2.
    C. Deng, L. Pan, R. Cui, C. Li, J. Qin, J. Mater. Sci.: Mater. Electron. 28, 3535 (2017)Google Scholar
  3. 3.
    S. Zhao, J. Li, D. Cao, G. Zhang, J. Li, K. Li, Y. Yang, W. Wang, Y. Jin, R. Sun, C. Wong, ACS Appl. Mater. Interfaces 9, 12147 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. Suh, H. Cho, J. Shin, J. Yeo, S. Ko, Adv. Mater. 27, 4744 (2015)CrossRefGoogle Scholar
  5. 5.
    F. Xu, Y. Zhu, Adv. Mater. 24, 5117 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee, C. Song, H.J. Hwang, J.H. Kim, T. Hyeon, D.-H. Kim, ACS Nano 9, 6626 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Dinh, H. Phana, A. Qamara, N. Nguyen, D. Dao, RSC Adv. 6, 77267 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Lee, S. Choi, A. Jung, S. Ko, Angew. Chem. Int. Ed. 52, 7718 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Jang, K. Kim, S. Ha, S. Jung, H. Lee, J. Kim, ACS Appl. Mater. Interfaces 9, 19612 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Wang, Z. Xu, J. Zhuang, Z. Liu, L. Peng, Z. Li, Y. Liu, W. Gao, C. Gao, Adv. Electron. Mater. 3, 1600425 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Lee, J. Lee, S. An, D. Kim, T. Kim, S. AlDeyab, A. Yarin, S. Yoon, J. Mater. Chem. A 5, 6677 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Cheng, H. Zhang, R. Wang, X. Wang, H. Zhai, T. Wang, Q. Jin, J. Sun, ACS Appl. Mater. Interfaces 8, 32925 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan, Y. She, Z. Zheng, Adv. Mater. 29, 19 (2017)Google Scholar
  14. 14.
    Z. Wang, Y. Huang, J. Sun, Y. Huang, H. Hu, R. Jiang, W. Gai, G. Li, C. Zhi, ACS Appl. Mater. Interfaces 8, 24837 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen, Y. Yin, F. Torrisi, Carbon 111, 622 (2017)CrossRefGoogle Scholar
  16. 16.
    Q. Xie, P. Zhao, S. Wu, Y. Zhang, J. Mater. Sci. 52, 13478 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Li, R. Torah, K. Yang, Y. Wei, J. Tudor, Electron. Lett. 51, 1266 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Gorgutsa, K. Bachus, S. LaRochelle, R.D. Oleschuk, Y. Messaddeq, Smart Mater. Struct. 25, 115027 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Huang, L. Liu, R. Wang, J. Zhang, X. Sun, H. Peng, J. Mater. Chem. C 4, 7589 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Liang, Z. Liu, Y. Liu, J. Mater. Sci.: Mater. Electron. 28, 10603 (2017)Google Scholar
  21. 21.
    W. Zhang, Y. Zhou, K. Feng, J. Trinidad, A. Yu, B. Zhao, Adv. Electron. Mater. 1, 1500205 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Zhang, Z. Pan, F.K. Yang, B. Zhao, Adv. Funct. Mater. 25, 1588 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Energy Environ. Sci. 6, 470 (2013)CrossRefGoogle Scholar
  24. 24.
    Z.L. Mu, Z.L. Zhao, H. Chen, G.P. Niu, H.F. Shi, Carbohydr. Polym. 75, 660 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Jang, J.H. Oh, Adv. Funct. Mater. 15, 494 (2005)CrossRefGoogle Scholar
  26. 26.
    P. Sun, Y. Liu, X. Wan, X. Meng, R. Su, S. Yu, J. Mater. Sci.: Mater. Electron. 26, 6787 (2015)Google Scholar
  27. 27.
    Y. Zhang, Z. Li, H. Li, J. Gao, J. Zhang, Y. Zeng, J. Mater. Sci.: Mater. Electron. 25, 2692 (2014)Google Scholar
  28. 28.
    L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 27, 4889 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Xu, Y. Ding, S. Qu, Z. Cai, J. Mater. Sci. 356, 951 (2015)Google Scholar
  30. 30.
    H.J. Butt, C. Semprebon, P. Papadopoulos, D. Vollmer, M. Brinkmann, M. Ciccotti, Soft Matter 9, 418 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Chu, S. Seeger, Chem. Soc. Rev. 43, 2784 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Zhang, S. Seeger, Angew. Chem. Int. Ed. 50, 6652 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Textile Science and Technology, Ministry of EducationDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations