UV–visible light detection with TiO2 thin film deposited on chemically textured p-Si substrate

Article

Abstract

This paper reports a study on the photodetection properties of TiO2 thin film deposited on chemically textured p-Si substrate and is compared to those deposited on pristine p-Si substrate. The structural properties of both the heterostructures were investigated using XRD analysis. FESEM images confirmed the deposition of TiO2 thin film on chemically pyramidal textured Si substrate. The average total reflectance of the textured Si substrate was reached to ~ 7.6% in the wavelength range of 300–900 nm. It was further decreased to ~ 6.5% after the deposition of 55 nm thick TiO2 on the top of the textured Si substrate. A systematic study was carried out to correlate the structural, optical and electrical properties of both the heterostructures. The electrical parameters of the heterojunction diodes were measured and compared under dark and illuminated conditions using UV and solar simulated light. UV as well as visible light detection property of the heterostructure of TiO2 thin film deposited on pyramidal textured Si substrate was improved compared to the one deposited on pristine Si by the factor 2.0 and 1.86, respectively, under the bias of − 2 V.

Notes

Acknowledgements

The authors would like to thank Vamsi K. Komarala from Indian Institute of Technology Delhi (IIT Delhi), India, for his help during measurement of total reflectance at Nanoscale Research Facility, IIT Delhi. A. Dewasi would also like to acknowledge Ministry of Human Resource Development (MHRD), Government of India, for providing research assistantship.

References

  1. 1.
    J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, Int. J. Hydrog. Energy 32, 2609 (2007)CrossRefGoogle Scholar
  2. 2.
    E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18, R33 (2003)CrossRefGoogle Scholar
  3. 3.
    Z.S. Hosseini, M. Shasti, S. Ramezani, A. Sani, Mortezaali, J. Appl. Phys. 119, 14503 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Rawat, D. Somvanshi, H. Kumar, Y. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotechnol. 15, 193 (2016)CrossRefGoogle Scholar
  5. 5.
    S.K. Gautam, A. Das, R.G. Singh, V.V.S. Kumar, F. Singh, J. Appl. Phys. 120, 214502 (2016)CrossRefGoogle Scholar
  6. 6.
    C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, Sens. Actuators, B 156, 114 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, J. Phys. D Appl. Phys. 45, 135102 (2012)CrossRefGoogle Scholar
  8. 8.
    C.P. Saini, A. Barman, D. Banerjee, O. Grynko, S. Prucnal, M. Gupta, D.M. Phase, A.K. Sinha, D. Kanjilal, W. Skorupa, A. Kanjilal, J. Phys. Chem. C 121, 11448 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Qu, X. Huang, Y. Li, G. Lin, B. Guo, D. Song, Q. Cheng, J. Alloys Compd. 698, 719 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Singh, M. Kumar, M. Saini, A. Singh, B. Satpati, T. Som, Appl. Surf. Sci. 418, 225 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Alimanesh, J. Rouhi, Z. Hassan, Ceram. Int. 42, 5136 (2016)CrossRefGoogle Scholar
  12. 12.
    R.S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M.S. Schmidt, A. Boisen, O. Hansen, S. Wenham, A. Barnett, Sol. Energy Mater. Sol. Cells 144, 740 (2016)CrossRefGoogle Scholar
  13. 13.
    C.P. Saini, A. Barman, B. Satpati, S.R. Bhattacharyya, D. Kanjilal, A. Kanjilal, Appl. Phys. Lett. 108, 11907 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Imamura, T. Nonaka, Y. Onitsuka, D. Irishika, H. Kobayashi, Appl. Surf. Sci. 395, 50 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Kumar, B. Satpati, A. Singh, T. Som, Sol. RRL 2, 1700216 (2018)CrossRefGoogle Scholar
  16. 16.
    H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Nat. Nanotechnol. 10, 624 (2015)CrossRefGoogle Scholar
  17. 17.
    K.E. Bean, IEEE Trans. Electron Devices ED -25, 1185 (1978)CrossRefGoogle Scholar
  18. 18.
    A. Dewasi, A. Mitra, J. Mater. Sci. Mater. Electron. 28, 18075 (2017)CrossRefGoogle Scholar
  19. 19.
    B.B. He, Two-Dimensional X-ray Diffraction (Wiley, New Jersey, 2009)CrossRefGoogle Scholar
  20. 20.
    G. Kaur, A. Mitra, K.L. Yadav, J. Mater. Sci. Mater. Electron. 26, 9689 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Dewasi, A. Mitra, Technol. Lett. 4, 13 (2017)Google Scholar
  22. 22.
    R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare, K. Garadkar, J. Mater. Sci. Mater. Electron. 26, 554 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Kaur, A. Dewasi, A. Mitra, K.L. Yadav, Adv. Sci. Lett. 22, 905 (2016)CrossRefGoogle Scholar
  24. 24.
    A.K. Ghatak, K. Thyagarajan, Optical Electronics. (Cambridge University Press, Cambridge, 1989)CrossRefGoogle Scholar
  25. 25.
    B.P. Saini, A. Barman, M. Kumar, P.K. Sahoo, T. Som, A. Kanjilal, Appl. Phys. Lett. 105, 123901 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Ion, I. Enculescu, S. Iftimie, V. Ghenescu, C. Tazlaoanu, C. Besleaga, T.L. Mitran, V.A. Antohe, M.M. Gugiu, S. Antohe, Chalcogenide Lett. 7, 521 (2010)Google Scholar
  27. 27.
    S. Antohe, V. Ruxandra, L. Tugulea, V. Gheorghe, D. Ionascu, J. Phys. III 6, 1133 (1996)Google Scholar
  28. 28.
    S. Aksoy, Y. Caglar, J. Alloys Compd. 613, 330 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Antohe, Phys. Status Solidi 136, 401 (1993)CrossRefGoogle Scholar
  30. 30.
    N. Venugopal, G. Kaur, A. Mitra, Appl. Surf. Sci. 320, 30 (2014)CrossRefGoogle Scholar
  31. 31.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, NY, 1981)Google Scholar
  32. 32.
    J.-Z. Chen, T.-H. Chen, L.-W. Lai, P.-Y. Li, H.-W. Liu, Y.-Y. Hong, D.-S. Liu, Materials (Basel). 8, 4273 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High Power Laser Lab, Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations