Optical investigations and optical constant of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3 and Nb2O5 as raw materials

  • Makram A. Fakhri
  • Evan T. Salim
  • M. H. A. Wahid
  • U. Hashim
  • Zaid T. Salim


This paper explored physical properties of LiNbO3 thin films that was deposited on quartz substrate employing spray pyrolysis technique. New raw materials were exploited as the precursor compounds. The films were annealed at different annealing temperatures, i.e. room temperature to 600 °C. The LiNbO3 are characterized and analyzed by the FESEM, AFM, X-ray diffraction and analyzed by UV–Visible and photoluminescence. The optical properties were analyzed by ultra violet- visible (UV–Visible) and photoluminescence measurements. The results indicated that the orientation of films crystallization and the grain size decreased with the increment of annealed temperatures. Energy band gap was recorded approximately 3.9 eV. The transmission efficiency was found to be in the range of 43–78%. Refractive index was observed from 2.02 to 2.43. Optical conductivity increased from 1.8 × 104 to 2.4 × 104 (s−1). The real and imaginary components of dielectric constants (εr, εi), and Urbach energy decreased with higher annealing temperature.


  1. 1.
    F. Meriche, E. Neiss-Clauss, R. Kremer, A. Boudrioua, E. Dogheche, E. Fogarassy, R. Mouras, A. Bouabellou, Micro structuring of LiNbO3 by using nanosecond pulsed laser ablation. Appl. Surf. Sci. 254, 1327–1331 (2007)CrossRefGoogle Scholar
  2. 2.
    P.S. Bullena, H.-C. Huangb, H. Yangb, J.I. Dadapb, I. Kymissisb, R.M. Osgood Jr., Microscopy and microRaman study of periodically poled domains in deeply thinned lithium niobate wafers. Opt. Mater. 57, 243 (2016)CrossRefGoogle Scholar
  3. 3.
    Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female aedes mosquito using surface acoustic wave technology: early prevention of dengue fever. Microelectron. Eng. 179, 83–90 (2017)CrossRefGoogle Scholar
  4. 4.
    V. Bornand, I. Huet, P. Papet, LiNbO3 thin films deposited on Si substrates: a morphological development study. Mater. Chem. Phys. 77, 571 (2003)CrossRefGoogle Scholar
  5. 5.
    Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, Simulation, fabrication and validation of surface acoustic wave layered sensor based on ZnO/IDT/128 YX LiNbO3. Int. J. Appl. Eng. Res. 11, 8785 (2016)Google Scholar
  6. 6.
    M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysia of nanophotonic LiNbO3. ARPN J. Eng. Appl. Sci. 11, 4974 (2004)Google Scholar
  7. 7.
    M. Liu, D.A. Xue, A solvothermal route to crystalline lithium niobate. Mater. Lett. 59, 2908 (2005)CrossRefGoogle Scholar
  8. 8.
    D. Xue, K. Kitamura, Crystallographic modifications of physical properties of lithium niobate crystals by the cation location. J. Cryst. Growth 249, 507 (2003)CrossRefGoogle Scholar
  9. 9.
    A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. Bernal, N. Courjal, Strong reduction of propagation losses in LiNbO3 ridge waveguides. Opt. Mater. 38, 37 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Kato, S. Kurimura, H.H. Lim, N. Mio, Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation. Opt. Mater. 40, 10 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Peithmann, M. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Bbuse, Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage. Appl. Phys. B 82, 419 (2006)CrossRefGoogle Scholar
  12. 12.
    M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail, Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J. Mater. Sci.: Mater. Electron. 28, 11813 (2017)Google Scholar
  13. 13.
    M. Liu, D. Xue, K. Li, Soft-chemistry synthesis of LiNbO3 crystallites. J. Alloys Compd. 449, 28–31 (2008)CrossRefGoogle Scholar
  14. 14.
    X. Wang, Y. Liang, S. Tian, W. Man, J. Jia, Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application. J. Cryst. Growth 375, 73 (2013)CrossRefGoogle Scholar
  15. 15.
    C. An, K. Tang, C. Wang, G. Shen, Y. Jin, Y. Qian, Characterization of LiNbO3 nanocrystals prepared via a convenient hydrothermal route. Mater. Res. Bull. 37, 1791–1796 (2002)CrossRefGoogle Scholar
  16. 16.
    H. Akazaw, M. Shimad, Control of crystallographic orientation of LiNbO3 films grown by electron–cyclotron resonance plasma sputtering on TiN films. Vacuum 80, 704 (2006)CrossRefGoogle Scholar
  17. 17.
    V. Bornand, I. Huet, P. Papet, LiNbO3 thin films deposited on Si substrates: a morphological development study. Mater. Chem. Phys. 77, 571 (2002)CrossRefGoogle Scholar
  18. 18.
    A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835 (2014)CrossRefGoogle Scholar
  19. 19.
    M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3 generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci.: Mater. Electron. 27, 13105–13112 (2016)Google Scholar
  20. 20.
    M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Annealing temperature effects on morphological and optical studies of nano and micro photonics lithium niobate using for optical waveguide applications. Aust. J. Basic Appl. Sci. 9, 128 (2015)Google Scholar
  21. 21.
    E.T. Salim, Optical and electrical properties of SnO2 thin film prepared using RTO method. Int. J. Mod. Phys. B 25, 1081 (2011)CrossRefGoogle Scholar
  22. 22.
    V.I. Sokolov, N.V. Marusin, V.Y. Panchenko, A.G. Savelyev, V. Seminogov, E. Khaydukov, Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation. Quantum Electron. 43(12), 1149–1153 (2013)CrossRefGoogle Scholar
  23. 23.
    M.A. Fakhri, E.T. Salim, U. Hashim, A.W. Abdulwahhab, Z.T. Salim, Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. J. Mater. Sci.: Mater. Electron. 28, 16728 (2017)Google Scholar
  24. 24.
    M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 255, 4491 (2009)CrossRefGoogle Scholar
  25. 25.
    E.T. Salem, M.A. Fakhry, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic device fabrication. Int. J. Nanoelectron. Mater. 6, 121 (2013)Google Scholar
  26. 26.
    A.S. Hassanien, A.A. Alaa, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50–xSex thin films. J. Alloys Compd. 648, 280 (2015)CrossRefGoogle Scholar
  27. 27.
    A.S. Hassanien, A.A. Alaa, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153 (2016)CrossRefGoogle Scholar
  28. 28.
    I.-S. Bae, S.-J. Cho, Electrical mechanical and optical properties of the organic–inorganic hybrid-polymer thin films deposited by PECVD. Thin Solid Films 516, 3577–3581 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Li-Ping, F. Liang, W. Wei-Dong, W. Xue-Min, L. Li, The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films. Chin. Phys. B 21, 047305–047309 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Shandilya, A. Sharma, M. Tomar, V. Gupta, Optical properties of the c-axis oriented LiNbO3 thin film. Thin Solid Films 520, 2142 (2012)CrossRefGoogle Scholar
  31. 31.
    K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by chemical bath method. Int. J. ChemTech Res. 6(5), 3071–3077 (2014)Google Scholar
  32. 32.
    M.D. Femi, A. Ohwofosirai, A. Sunday, O.S.B.A.E.F.I. Ezema, R.U. Osuji, Variation of the optical conductivity, dielectric function and the energy bandgap of CdO using cadmium acetate dehydrate. Int. J. Adv. Electr. Electron. Eng. 2, 331 (2014)Google Scholar
  33. 33.
    P. Li-Ping, F. Liang, W. Wei-Dong, W. Xue-Min, L. Li, The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films. Chin. Phys. B 21, 047305-1–047305-5 (2012)Google Scholar
  34. 34.
    N.S.L.S. Vasconcelos, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo, L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin, M.I. Bernardi, J.A. Varela, Epitaxial growth of LiNbO thin films in a microwave oven. Thin Solid Films 436, 213 (2003)CrossRefGoogle Scholar
  35. 35.
    D.E. Zelmon, D.L. Small, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3323 (1997)CrossRefGoogle Scholar
  36. 36.
    D. Ciplys, R. Rimeika, I. Suarez, G. Lifante, M.S. Shur, A. Aulas, Guided-wave acousto-optic diffraction in Zn:LiNbO3. Elelctron. Lett. 42, 1294 (2006)CrossRefGoogle Scholar
  37. 37.
    T. Ghosh, B. Samanta, P.C. Jana, P. Ganguly, Comparison of calculated and measured refractive index profiles of continuous wave ultravoilet written waveguides in LiNbO3 and its analysis by effective index based matrix method. J. Appl. Phys. 117, 053106 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, X. Zhang, Biomolecular binding dynamics in sensors based on metallic photonic crystals. Opt. Commun. 320, 56 (2014)CrossRefGoogle Scholar
  39. 39.
    E.K. Abdel-Khalek, A.A. Bahgat, Optical and dielectric properties of transparent glasses and nanocrystals of lithium niobate and lithium diborate in borate glasses. Phys. B 405, 1986 (2010)CrossRefGoogle Scholar
  40. 40.
    M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, XRD analysis and morphological studies of spin coated LiNbO3 nano photonic crystal prepared for optical waveguide application. Adv. Mater. Res. 1133, 457 (2016)CrossRefGoogle Scholar
  41. 41.
    S.M. Young, F. Zheng, A.M. Rappe, First-principles materials design of high-performing bulk photovoltaics with the LiNbO3 structure. Phys. Rev. Appl. 4, 054004 (2015)CrossRefGoogle Scholar
  42. 42.
    C. Thierfelder, S. Sanna, A. Schindlmayr, W.G. Schmidt, Do we know the band gap of lithium niobate? Phys. Status Solidi C 7, 362 (2010)CrossRefGoogle Scholar
  43. 43.
    I.-K. Jeong, S. Park, Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a rietveld analysis. J. Korean Phys. Soc. 59, 2756–2759 (2011)CrossRefGoogle Scholar
  44. 44.
    S. Hwang, J. Lee, C. Jeongb, Y. Jooa, Effect of film thickness and annealing temperature on hillock distributions in pure Al films. Scripta Mater. 56, 17 (2007)CrossRefGoogle Scholar
  45. 45.
    M.H. Zhao, D.A. Bonnell, J.M. Vohs, Ferroelectric polarization dependent interactions at Pd–LiNbO3(0001)Pd–LiNbO3(0001)interfaces. J. Vac. Sci. Technol. A 27, 1337 (2009)CrossRefGoogle Scholar
  46. 46.
    A.Z. Simoesa, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, C.S. Riccardi, M. Cantoni, J.A. Varela, Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films. J. Eur. Ceram. Soc. 24, 1607–1613 (2004)CrossRefGoogle Scholar
  47. 47.
    P. Kumar, S.M. Babu, S. Perero, R.L. Sai, I. Bhaumik, S. Ganesamoorthy, A.K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray di®raction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal. Pramana 75 1035–1040 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laser and Optoelectronic DepartmentUniversity of TechnologyBaghdadIraq
  2. 2.Institute of Nano Electronic EngineeringUniversity Malaysia PerlisKangarMalaysia
  3. 3.Laser Science BranchUniversity of TechnologyBaghdadIraq
  4. 4.Semiconductor Photonics & Integrated Lightwave Systems (SPILS), School of Microelectronic EngineeringUniversity Malaysia PerlisArauMalaysia

Personalised recommendations