Study on the electromagnetic interference shielding effectiveness of TiN film

  • Linlin Lu
  • Fa Luo
  • Yuchang Qing
  • Wancheng Zhou
  • Dongmei Zhu


TiN films were prepared by direct current reactive magnetron sputtering, and the effect of substrate temperatures (25, 100, 200 and 300 °C) on the resistivity and electromagnetic interference shielding effectiveness of TiN films was investigated. The results showed that as the substrate temperature rose from 25 to 200 °C, the resistivity of TiN films dropped from 968 to 285 µΩ cm, and then increased to 349 µΩ cm at 300 °C. The total shielding effectiveness SET in the X-band frequency range of TiN films with the same thickness (1.1 ± 0.03 µm) showed an uptrend with the substrate temperature rise and was associated with the resistivity of the films. The lower resistivity led to higher total shielding effectiveness. When the substrate temperature was 200 °C, the SET of TiN films with the thickness at 1.1 µm was highest and more than 20 dB, indicating that TiN films could serve as EMI shielding materials in the X-band, particularly in applications where ultrathin thickness and design flexibility were desired.



This work was supported by Fundamental Research Funds for the Central Universities (No. 3102017ZY050), and State Key Laboratory of Solidification Processing (NWPU), China (Grant No. KP201604).


  1. 1.
    X. Luo, D.D.L. Chung, Compos. Part B 30, 227 (1999)CrossRefGoogle Scholar
  2. 2.
    P. Verma, P. Saini, R.S. Malik, V. Choudhary, Carbon 89, 308 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Mu, W. Zhou, F. Luo, D. Zhu, Y. Qing, Z. Huang, J. Mater. Sci. 49, 1527 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Qing, Q. Wen, F. Luo, W. Zhou, D. Zhu, J. Mater. Chem. C 4, 371 (2015)Google Scholar
  5. 5.
    S. Frackowiak, J. Ludwiczak, K. Leluk, K. Orzechowski, M. Kozlowski, Mater. Des. 65, 749 (2015)CrossRefGoogle Scholar
  6. 6.
    D.D.L. Chung, Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 9, 350 (2000)CrossRefGoogle Scholar
  7. 7.
    X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, T. Yan, Mater. Sci. Eng. B 197, 67 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Qing, Y. Mu, Y. Zhou, F. Luo, D. Zhu, W. Zhou, J. Eur. Ceram. Soc. 34, 2229 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Hsiao, C. Ma, W. Liao, Y. Wang, S. Li, Y. Huang, R. Yang, W. Liang, ACS Appl. Mater. Interfaces 6, 10667 (2014)CrossRefGoogle Scholar
  10. 10.
    J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. 74, 211 (2013)CrossRefGoogle Scholar
  11. 11.
    L.L. Wang, B.K. Tay, K.Y. See, Z. Sun, L.K. Tan, D. Lua, Carbon, 47, 1905 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P.C. Eklund, Nano Lett. 6, 1141 (2006)CrossRefGoogle Scholar
  13. 13.
    Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo, D. Zhu, J. Alloys Compd. 666, 359 (2016)CrossRefGoogle Scholar
  14. 14.
    A.P. Singh, M. Mishra, D.P. Hashim, T.N. Narayanan, M.G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B.P. Singh, Carbon 85, 79 (2015)CrossRefGoogle Scholar
  15. 15.
    S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, Y.C. Huang, Carbon 60, 57 (2013)CrossRefGoogle Scholar
  16. 16.
    H.B. Zhang, W.G. Zheng, Q. Yan, Z.G. Jiang, Z.Z. Yu, Carbon 50, 5117 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25, 1296 (2013)CrossRefGoogle Scholar
  18. 18.
    X.C. Wang, X.M. Chen, B.H. Yang, Solid State Sci. 14, 435 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Liang, J. Xu, D. Zhou, X. Sun, S. Chu, Y. Bai, Ceram. Int. 42, 2642 (2016)CrossRefGoogle Scholar
  20. 20.
    H.V. Bui, A.Y. Kovalgin, R.A.M. Wolters, Appl. Surf. Sci. 269, 45 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Zhao, C. Zhao, L. Wu, G. Duan, J. Wang, G. Han, J. Alloys Compd. 569, 1 (2013)CrossRefGoogle Scholar
  22. 22.
    C. He, J. Zhang, J. Wang, G. Ma, D. Zhao, Q. Cai, Appl. Surf. Sci. 276, 667 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Popović, M. Novaković, M. Mitrić, K. Zhang, N. Bibić, Int. J. Refract. Met. Hard Mater. 48, 318 (2015)CrossRefGoogle Scholar
  24. 24.
    U.C. Oh, J.H. Je, J. Appl. Phys. 74, 1692 (1993)CrossRefGoogle Scholar
  25. 25.
    E. Penilla, J. Wang, J. Nanomater. 5, 145 (2008)Google Scholar
  26. 26.
    J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, J. Phys. D: Appl. Phys. 30, 5 (1997)CrossRefGoogle Scholar
  27. 27.
    R. Wuhrer, W.Y. Yeung, J. Mater. Sci. 37, 1993 (2002)CrossRefGoogle Scholar
  28. 28.
    R. Banerjee, R. Chandra, P. Ayyub, Thin Solid Films 64, 405 (2002)Google Scholar
  29. 29.
    A.A. Irudayaraj, R. Srinivasan, P. Kuppusami, E. Mohandas, S. Kalainathan, K. Ramachandran, J. Mater. Sci. 43, 1114 (2008)CrossRefGoogle Scholar
  30. 30.
    K. Vasu, M.G. Krishna, K.A. Padmanabhan, Appl. Surf. Sci. 257, 3069 (2011)CrossRefGoogle Scholar
  31. 31.
    N. Arshi, J. Lu, K.J. Yun, G.L. Chan, J.H. Yoon, F. Ahmed, Mater. Chem. Phys. 134, 839 (2012)CrossRefGoogle Scholar
  32. 32.
    J.H. Huang, F.Y. Ouyang, G.P. Yu, Surf. Coat. Technol. 201, 7043 (2007)CrossRefGoogle Scholar
  33. 33.
    B.E. Warren, X-ray Diffraction. (Addison wesley publishing Co., London, 1969)Google Scholar
  34. 34.
    H. kun, Solid State Physics (High Education Press, Beijing, 1988)Google Scholar
  35. 35.
    H.T. Kim, J.Y. Park, C. Park, Korean J. Chem. Eng. 29, 676 (2012)CrossRefGoogle Scholar
  36. 36.
    N. Arshi, J.Q. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, F. Ahmed, J. Mater. Sci. Mater. Electron. 24, 1194 (2013)CrossRefGoogle Scholar
  37. 37.
    H.H. Huang, M.H. Hon, Thin Solid Films 416, 54 (2002)CrossRefGoogle Scholar
  38. 38.
    Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Carbon 45, 821 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Wang, F. He, Y. Wan, Y. Qi, J. Alloys Compd. 514, 35 (2012)CrossRefGoogle Scholar
  40. 40.
    X. Li, L. Zhang, X. Yin, L. Feng, Q. Li, Scripta Mater. 63, 657 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Carbon 68, 118 (2014)CrossRefGoogle Scholar
  42. 42.
    C.S. Zhang, Q.Q. Ni, S.Y. Fu, K. Kurashiki, Compos. Sci. Technol. 67, 2973 (2007)CrossRefGoogle Scholar
  43. 43.
    S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, ACS Appl. Mater. Interfaces 5, 4712 (2013)CrossRefGoogle Scholar
  44. 44.
    H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011)CrossRefGoogle Scholar
  45. 45.
    G.A. Gelves, M.H. Alsaleh, U. Sundararaj, J. Mater. Chem. 21, 829 (2010)CrossRefGoogle Scholar
  46. 46.
    Y. Yang, M.C. Gupta, K.L.D. And, R.W. Lawrence, Nano Lett. 5, 2131 (2005)CrossRefGoogle Scholar
  47. 47.
    J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W.G. Zheng, ACS Appl. Mater. Interfaces 5, 2677 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Linlin Lu
    • 1
  • Fa Luo
    • 1
  • Yuchang Qing
    • 1
  • Wancheng Zhou
    • 1
  • Dongmei Zhu
    • 1
  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations