Skip to main content
Log in

Microwave absorption properties of double-layer absorbers based on spindle magnetite nanoparticles and flower-like copper sulfide microspheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the spindle magnetite nanoparticles (SMNPs) and flower-like copper sulfide microspheres (FCSMSs) were synthesized via hydrothermal method. The structures, chemical composition and morphologies of samples were analyzed and characterized in detail. The microwave absorption properties of single-layer and double-layer absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 2 to 18 GHz. The results show that the double-layer absorbers consisting of FCSMSs as matching layer and SMNPs as absorbing layer display superior microwave absorbing performance compared to the single-layer ones due to the proper combination of magnetic loss of SMNPs and dielectric loss of FCSMSs, and the improved impedance matching characteristics. When the thicknesses of the absorbing layer and the matching layer are 1.6 and 0.4 mm, respectively, the minimum reflection loss reaches − 74.3 dB at 10.9 GHz, and the efficient absorption bandwidth is up to 5.34 GHz (8.46–13.8 GHz). The optimal SMNPs/FCSMSs double-layer absorbers can become a novel microwave absorption material with strong-absorption and broad-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Liu, R. Che, H. Chen et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    Article  Google Scholar 

  2. W. Zhou, Y. Gong, L. Tu et al., Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J. Alloys Compd. 693, 1–8 (2017)

    Article  Google Scholar 

  3. L. Li, S. Liu, L. Lu, Synthesis and significantly enhanced microwave absorption properties of cobalt ferrite hollow microspheres with protrusions/polythiophene composites. J. Alloys Compd. 722, 158–165 (2017)

    Article  Google Scholar 

  4. Y. Wang, W. Zhang, X. Wu et al., Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 228, 18–24 (2017)

    Article  Google Scholar 

  5. S. Zhang, W. Wei, X. Xiao et al., Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res. Lett. 6, 89 (2011)

    Article  Google Scholar 

  6. G. Wu, H. Wu, K. Wang et al., Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6(63), 58069–58076 (2016)

    Article  Google Scholar 

  7. S. Qu, Y. Yu, K. Lin et al., Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 29, 1232–1237 (2018)

    Google Scholar 

  8. H. Xu, H. Bi, R. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111, 16229 (2012)

    Google Scholar 

  9. H. Fan, G. You, Y. Li et al., Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties. J. Phys. Chem. C 113, 9928–9935 (2009)

    Article  Google Scholar 

  10. A. Feng, G. Wu, C. Pan et al., The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17(6), 3786–3791 (2017)

    Article  Google Scholar 

  11. C. Shi, J. Zhu, X. Shen et al., Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv. 8(8), 4072–4077 (2018)

    Article  Google Scholar 

  12. A. Feng, Z. Jia, Y. Zhao et al., Development of Fe/Fe3O4@C composite with excellent electromagnetic absorption performance. J. Alloys Compd. 745, 547–554 (2018)

    Article  Google Scholar 

  13. G. Wu, Y. Cheng, Z. Yang et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    Article  Google Scholar 

  14. X. Qing, X. Yue, B. Wang et al., Facile synthesis of size-tunable, multilevel nanoporous Fe3O4 microspheres for application in electromagnetic wave absorption. J. Alloys Compd. 595, 131–137 (2014)

    Article  Google Scholar 

  15. T. Wei, Y. Liu, W. Dong et al., Surface-dependent localized surface plasmon resonances in CuS nanodisks. Appl. Mater. Interfaces 5, 10473–10477 (2013)

    Article  Google Scholar 

  16. B. Zhao, G. Shao, B. Fan et al., Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015)

    Article  Google Scholar 

  17. G. Wu, Y. Cheng, K.Wang et al., Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci.: Mater. Electron. 27(6), 5592–5599 (2016)

    Article  Google Scholar 

  18. K. Yuan, J. Wu, M. Liu et al., Fabrication and microstructure of p-type transparent conducting CuS thin film and its application in dye-sensitized solar cell. Appl. Phys. Lett. 93, 939 (2008)

    Google Scholar 

  19. O. Otelaja, D.-H. Ha, T. Ly et al., Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition. ACS Appl. Mater. Interfaces 6, 18911–18920 (2014)

    Article  Google Scholar 

  20. D. Yan, S. Cheng, R. Zhuo et al., Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009)

    Article  Google Scholar 

  21. A. Feng, G. Wu, C. Pan et al., Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotechnol. 17(6), 3859–3863 (2017)

    Article  Google Scholar 

  22. W. Du, X. Qian, X. Ma et al., Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chemistry 13, 3241–3247 (2007)

    Article  Google Scholar 

  23. C. Wu, S. Yu, S. Chen et al., Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J. Mater. Chem. 16, 3326–3331 (2006)

    Article  Google Scholar 

  24. H. Wu, G. Wu, Y. Ren et al., Multi-shelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem.- Eur. J. 22(26), 8864–8871 (2016)

    Article  Google Scholar 

  25. Q. Liu, Q. Cao, H. Bi et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with Strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016)

    Article  Google Scholar 

  26. C. Wei, X. Shen, F. Song et al., Double-layer microwave absorber based on nanocrystalline Zn0.5Ni0.5Fe2O4/α-Fe microfibers. Mater. Des. 35, 363–368 (2012)

    Article  Google Scholar 

  27. Y. Qing, W. Zhou, F. Luo et al., Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. J. Magn. Magn. Mater. 323, 600–606 (2011)

    Article  Google Scholar 

  28. C. Jia, L. Sun, Z. Yan et al., Single-crystalline iron oxide nanotubes. Angew. Chem. 44, 4328–4333 (2005)

    Article  Google Scholar 

  29. Z. Jia, K. Kou, M. Qin et al., Controllable and large-scale synthesis of carbon nanostructures: a review on bamboo-like nanotubes. Catalysts 7(9), 256–276 (2017)

    Article  Google Scholar 

  30. J. Liu, D. Xue, Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. J. Cryst. Growth 311, 500–503 (2009)

    Article  Google Scholar 

  31. H. Qi, J. Huang, L. Cao et al., One-dimensional CuS microstructures prepared by a PVP-assisted microwave hydrothermal method. Ceram. Int. 38, 2195–2200 (2012)

    Article  Google Scholar 

  32. W. Zhou, L. Xu, L. Jiang et al., Towards suppressing loss tangent: Effect of SiO2 coating layer on dielectric properties of core-shell structure flaky Cu reinforced PVDF composites. J. Alloys Compd. 710, 47–56 (2017)

    Article  Google Scholar 

  33. G. Deroubaix, P. Marcus, X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surf. Interfaces Anal. 18, 39–46 (1992)

    Article  Google Scholar 

  34. P. Liu, Y. Huang, X. Zhang, Enhanced electromagnetic absorption properties of reduced graphene oxide–polypyrrole with NiFe2O4 particles prepared with simple hydrothermal method. Mater. Lett. 120, 143–146 (2014)

    Article  Google Scholar 

  35. Z. Guo, M. Seol, M. Kim et al., Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors. Nanoscale 4, 7525–7531 (2012)

    Article  Google Scholar 

  36. C. Wang, X. Han, X. Zhang et al., Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C 114, 3196–3203 (2010)

    Article  Google Scholar 

  37. C. Pan, J. Zhang, K. Kou et al., Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat. Mass. Tran. 120, 1–8 (2018)

    Article  Google Scholar 

  38. W. Zhou, Z. Wang, L. Dong et al., Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Composites A 79, 183–191 (2015)

    Article  Google Scholar 

  39. R. Kirian, R. Bean, K. Beyerlein et al., Direct phasing of finite crystals illuminated with a free-electron laser. Phys. Rev. X 5, 011015 (2015)

    Google Scholar 

  40. Z. Wang, W. Zhou, L. Dong et al., Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. J. Alloys Compd. 682, 738–745 (2016)

    Article  Google Scholar 

  41. J. Xiang, J. Li, X. Zhang et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014)

    Article  Google Scholar 

  42. P. Liu, Z. Yao, J. Zhou et al., Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  Google Scholar 

  43. H. Lv, Z. Yang, P. Wang et al., A voltage-boosting strategy Enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706343

    Google Scholar 

  44. Z. Wang, W. Zhou, L. Dong et al., Dielectric relaxation dynamics of Al/epoxy micro-composites. J. Alloys Compd. 689, 342–349 (2016)

    Article  Google Scholar 

  45. W. Zhou, Q. Chen, X. Sui et al., Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Composites A 71, 184–191 (2015)

    Article  Google Scholar 

  46. S. Wei, X. Wang, B. Zhang et al., Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J. 314, 477–487 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, L., Zheng, S. et al. Microwave absorption properties of double-layer absorbers based on spindle magnetite nanoparticles and flower-like copper sulfide microspheres. J Mater Sci: Mater Electron 29, 8978–8988 (2018). https://doi.org/10.1007/s10854-018-8922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8922-6

Navigation