Advertisement

Scintillation and dosimeter properties of 6LiF/CaF2:Eu eutectic composites

  • Naoki Kawano
  • Noriaki Kawaguchi
  • Kentaro Fukuda
  • Go Okada
  • Takayuki Yanagida
Article
  • 32 Downloads

Abstract

We investigated scintillation and dosimeter properties of 6LiF/CaF2 eutectic composites doped with different concentrations of Eu (0.005, 0.02, 0.1, 0.3, and 1.0). In the photoluminescence (PL) and scintillation spectra, an emission peak at 430 nm due to the 5d–4f transitions of Eu2+ was observed. The intensity of PL and scintillation for 6LiF/CaF2:0.005%Eu was the highest among the samples tested. In thermally stimulated luminescence (TSL), several glow peaks of 6LiF/CaF2:0.005%Eu were observed after X-ray irradiation of 1000 mGy. The TSL response exhibited a linear response against X-ray dose over a dose range of 1–10,000 mGy. In optically stimulated luminescence (OSL), an emission peak was observed at 430 nm during a stimulation by 630 nm light after X-ray irradiation of 1000 mGy. The OSL intensity was the highest for 6LiF/CaF2:0.005%Eu among all the samples investigated.

Notes

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (A) (17H01375), Grant-in-Aid for Young Scientists (B) (17K14911) and Grant-in-Aid for Research Activity Start-up (16H06983) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government (MEXT) as well as A-STEP from Japan Science and Technology Agency (JST). The Cooperative Research Project of Research Institute of Electronics, Shizuoka University, Mazda Foundation, Konica Minolta Science and Technology Foundation, NAIST Foundation and TEPCO Memorial Foundation are also acknowledged.

References

  1. 1.
    B.C. Bhatt, Radiat. Prot. Environ. 34, 6 (2011)Google Scholar
  2. 2.
    M.R. Mayhugh, R.W. Chrisy, N.M. Johnson, J. Appl. Phys. 41, 2968 (1970)CrossRefGoogle Scholar
  3. 3.
    S.W.S. McKeever, Radiat. Meas. 46, 1336 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Miyamoto, H. Nanto, T. Kurobori, Y. Fujimoto, T. Yanagida, J. Ueda, S. Tanabe, T. Yamamoto, Radiat. Meas. 71, 529 (2014)CrossRefGoogle Scholar
  5. 5.
    A.J.J. Bos, Nucl. Instrum. Methods. Res. Sect. B 184, 3 (2001)CrossRefGoogle Scholar
  6. 6.
    P. Bilski, P. Olko, B. Burgkhardt, E. Piesch, Radiat. Meas. 24, 439 (1995)CrossRefGoogle Scholar
  7. 7.
    M. Budzanowski, P. Bilski, P. Olko, E. Ryba, S. Perle, M. Majewski, Radiat. Prot. Dosim. 125(4), 251 (2007)Google Scholar
  8. 8.
    G.F. knoll, Radiation Detection and Measurements, 2nd edn. (Wiley, New York, 2001)Google Scholar
  9. 9.
    M. Koshimizu, T. Yanagida, Y. Fujimoto, Y. Yamazaki, K. Watanabe, A. Uritani, K. Fukuda, N. Kawaguchi, S. Kishimoto, K. Asai, Appl. Phys. Exp. 6, 062601 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Yanagida, A. Yamaji, N. Kawaguchi, Y. Fujimoto, K. Fukuda, S. Kurosawa, A. Yamazaki, K. Watanabe, Y. Futami, Y. Yokota, A. Uritani, T. Iguchi, A. Yoshikawa, M. Nikl, Appl. Phys. Exp. 4, 106401 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Yanagida, N. Kawaguchi, Y. Fujimoto, K. Fukuda, Y. Yokota, A. Yamazaki, K. Watanabe, J. Pejchal, A. Uritani, T. Iguchi, A. Yoshikawa, Opt. Mater. 33, 1243 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Yanagida, A. Yoshikawa, Y. Yokota, S. Maeo, N. Kawaguchi, S. Ishizu, K. Fukuda, T. Suyama, Opt. Mater. 32, 311 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Fujiwara, H. Takahashi, T. Yanagida, K. Kamada, K. Fukuda, N. Kawaguchi, N.L. Yamada, M. Furusawa, K. Watanabe, Y. Fujimoto, M. Uesaka, Neutron News 23, 31 (2012)CrossRefGoogle Scholar
  14. 14.
    P.A. Rodnyi, V.B. Mikhailik, G.B. Stryganyuk, A.S. Voloshinovskii, C.W.E. Eijk, G.F. Zimmerer, J. Lumin. 86, 161 (2000)CrossRefGoogle Scholar
  15. 15.
    G. Rooh, H.J. Kim, S. Kim, IEEE Trans. Nucl. Sci. 57, 1255 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Rooh, H.J. Kim, H. Park, S. Kim, IEEE Trans. Nucl. Sci. 57, 3836 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Danilkin, A. Lust, M. Kerikmäe, V. Seeman, H. Mändar, M. Must, Radiat. Meas. 41, 677 (2006)CrossRefGoogle Scholar
  18. 18.
    V.E. Kafadar, A.N. Yazici, R.G. Yildirim, Nucl. Instrum. Methods Res. Sect. B 267, 3337 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Choujyakh, F. Gimcno, J.I. Pena, L. Contreras, V.M. Orera, Phys. Chem. News 13, 139 (2003)Google Scholar
  20. 20.
    J. Trohan-Piegza, J. Glodo, V.K. Sarin, Radiat. Meas. 45, 163 (2000)CrossRefGoogle Scholar
  21. 21.
    N. Kawaguchi, K. Fukuda, T. Yanagida, Y. Fujimoto, Y. Yokota, T. Suyama, K. Watanabe, A. Yamazaki, A. Yoshikawa, Nucl. Instrum. Methods Res. Sect. A 652, 209 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Yanagida, N. Kawaguchi, Y. Fujimoto, K. Fukuda, K. Watanabe, A. Yamazaki, A. Uritani, J. Lumin. 144, 212 (2013)CrossRefGoogle Scholar
  23. 23.
    T. Yanagida, K. Fukuda, Y. Fujimoto, N. Kawaguchi, S. Kurosawa, A. Yamazaki, K. Watanabe, Y. Futami, Y. Yokota, J. Pejchal, A. Yoshikawa, A. Uritani, T. Iguchi, Opt. Mater. 34, 209 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, A.K. Sharma, S.P. Lochab, R. Kumar, AIP Conf. Proc. 1447, 387 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Bidyasagar, A.G. Bauna, Th..B. Singh, J. Pure. Appl. Phys. 52, 609 (2014)Google Scholar
  26. 26.
    H. Msai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, K. Fukuda, Sci. Rep. 5, 13332 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Opt. Mater. 35, 2480 (2013)CrossRefGoogle Scholar
  28. 28.
    T. Yanagida, Y. Fujimoto, T. Ito, K. Uchiyama, K. Mori, Appl. Phys. Exp. 7, 062401 (2014)CrossRefGoogle Scholar
  29. 29.
    T. Yanagida, Y. Fujimoto, N. Kawaguchi, S. Yanagida, J. Ceram. Soc. Jpn. 121, 988 (2013)CrossRefGoogle Scholar
  30. 30.
    F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, T. Yanagida, Ceram. Int. 43, 604 (2017)CrossRefGoogle Scholar
  31. 31.
    P. Belli, R. Bernabei, V. Landoni, I. Modena, Nucl. Instrum. Methods Res. Sect. A 357, 329 (1995)CrossRefGoogle Scholar
  32. 32.
    Y. Nakamura, Y. Koizumi, J. Chromatogr. 333, 83 (1985)CrossRefGoogle Scholar
  33. 33.
    V.A. Skuratov, S.M. Abu, V.A. AlAzm, Altynov, Nucl. Instrum. Methods Res. Sect. B 191, 251 (2002)CrossRefGoogle Scholar
  34. 34.
    N. Fedorov, A. Belsky, E. Constant, D. Descamps, P. Martin, A.N. Vasil’ev, J. Lumin. 129, 1813 (2009)CrossRefGoogle Scholar
  35. 35.
    G. Kitis, J.M. Gomes-Ros, J.W.N. Tuyn, J. Phys. D 31, 2636 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Engineering ScienceAkita UniversityAkitaJapan
  2. 2.Graduate School of Materials ScienceNara Institute of Science and TechnologyIkomaJapan
  3. 3.Tokuyama CorporationShunan-shiJapan

Personalised recommendations