Skip to main content
Log in

Preparation, structural, spectroscopic and magneto-electric properties of multiferroic cadmium doped neodymium manganite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium doped neodymium manganite having general formula Nd1−xCdxMnO3 where x = 0.05, 0.20 were prepared by solid state reaction technique. The effect of cadmium doping on the structural, dielectric and magnetic properties were understood by various characterization probes like X-ray diffractometer, scanning electron microscope, energy dispersive X-ray analyzer, Fourier transform infrared spectroscope, impedance analyzer, vibrating sample magnetometer and resistivity measurements for low temperature using four probe method. XRD analysis confirms the single phase formation with perovskite structure having orthorhombic phase. The crystallite size was found to be in the range of 30–50 nm as determined by Debye-Scherer relation and Williamson’s Hall method. Density of the samples were determined theoretically and experimentally and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape for all grains. FTIR spectra depict the presence of various atomic bonds within a molecule and the present study depicts the presence of the Mn–O bond and O–Mn–O stretching for these compositions. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The variation of dielectric constant value with the change in frequency and temperature were studied and compared for two compositions. Magnetization study confirms the phase transition of the materials from the paramagnetic to ferromagnetic behaviour of the material at low temperature. The variation in resistance below room temperature were studied and compared for both the compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Novrouzi, F. Faridbod, M.S. Karimi, Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition. J. Mater. Sci.: Mater. Electron. 28, 3325–3336 (2017)

    Google Scholar 

  2. M. Eghbali-Arania, A. Sobhani-Nasabb, M. Rahimi-Nasrabadic, F. Ahmadid, S. Pourmasouda, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)

    Article  Google Scholar 

  3. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)

    Article  Google Scholar 

  4. S.S. Hosseinpour‑Mashkani, A. Sobhani‑Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)

    Google Scholar 

  5. F. Ahmadi, M. Rahimi-Nasrabadi, M. Behpour, Synthesis Nd2TiO5 nanoparticles with different morphologies by novel approach and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28, 1531–1536 (2017)

    Google Scholar 

  6. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155–6165 (2017)

    Article  Google Scholar 

  7. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)

    Google Scholar 

  8. I.A.A. Latif, A. Hassen, C. Zybill, M. Abdel-Hafiez, S. Allam, Th. El-Sherbini, The influence of tilt angle on the CMR in Sm0.6Sr0.4MnO3. J. Alloys Compd. 452, 245–248 (2008)

    Article  Google Scholar 

  9. K.U. Esko, J. Malm, N. Imamura, H. Yamauchi, M. Karppinen, Characterization of RMnO3: high-pressure synthesized metastable perovskites and their hexagonal precursor phases. Mater. Chem. Phys. 112, 1029–1034 (2008)

    Article  Google Scholar 

  10. K. Gupta, P.T. Das, T.K. Nath, P.C. Jana, A.K. Meikap, Polymer coated manganites and its magnetic properties. Int. J. Soft Comput. Eng. (2012). ISSN: 2 2231-2307 246-250

  11. C.N.R. Rao, C.R. Serrao, New routes to multiferroics. J. Mater. Chem. 17, 4931–4938 (2007)

    Article  Google Scholar 

  12. R.P. Rairigh, G.S. Bhalla, S. Tongay, T. Dhakal, A. Biswas, A.F. Hebard, Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites. Nat. Phys. 3, 551–555 (2007)

    Article  Google Scholar 

  13. R.A. Vargas, R. Chiba, M. Andreoli, E.S.M. Seo, Strontium doped neodymium manganite powders obtained by the solids mixture. Mater. Sci. Forum 660–661, 1113–1117 (2010)

    Article  Google Scholar 

  14. C.N.R. Rao, B. Raveau, Colossal magneto resistance, charge ordering and related properties of manganese oxides. World Sci. (1998). ISBN: 978-981-02-3276-4

  15. C. Zener, Ferromagnetic compounds of manganese with perovskite structure. J. Phys. Rev. 82(3), 403–405 (1951)

    Article  Google Scholar 

  16. Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006)

    Article  Google Scholar 

  17. L.Y. Kuai, Y.W. Yin, L.X. Guang, Colossal magneto resistance in manganites and related prototype devices. Chin. Phys. B 22 (8), 087502 (2013)

  18. R.A. Vargas, R. Chiba, M. Andreoli, E.S.M. Seo, Strontium-doped neodymium manganite powders obtained by the solid state mixture technique Mater. Sci. Forum 660–661, 1113–1117 (2010)

    Article  Google Scholar 

  19. W.J. Kuen, L.K. Pah, A.H. Shaari, C.S. Kien, N.S. Wei, A.G.H. Ming, Effect of rare earth elements substitution in La site for LaMnO3 manganites. Pertanika J. Sci. Technol. 20(1), 81–88 (2012)

    Google Scholar 

  20. A.S. Aldwayyan, F.M. Al-Jekhedab, M. Al-Noaimi, B. Hammouti, T.B. Hadda, M. Suleiman, I. Warad, Synthesis and characterization of CdO nanoparticles starting from organometalic Dmphen-CdI2 complex. Int. J. Electrochem. Sci. 8, 10506–10514 (2013)

    Google Scholar 

  21. R.G. Shetkar, A.V. Salker, Electrical, magnetic and catalytic investigations on some manganite pervoskites prepared by combustion method. J. Mater. Sci. Technol. 26(12), 1098–1102 (2010)

    Article  Google Scholar 

  22. J. Hemberger, M. Brando, R. Wehn, V.Y. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Magnetic and thermodynamic properties of RMnO3 (R = Pr, Nd). Phys. Rev. B 69, 064418 (2004)

  23. M.N. Rifaya, T. Theivasanthi, M. Alagar, Chemical capping synthesis of nickel oxide nanoparticles and their characterization studies. Nanosci. Nanotechnol. 2–5, 134–138 (2012)

    Article  Google Scholar 

  24. C. Bernard, B. Durand, M. Verelst, P. Lecante, Hydrothermal synthesis of LaMnO3 + ς FTIR and W.A.X.S investigation of the evolution from amorphous to crystallized powder. J. Mater. Sci. 39, 2821–2826 (2004)

    Article  Google Scholar 

  25. K.K. Bamzai, N. Kachroo, V. Singh, S. Verma, Synthesis, characterization and thermal decomposition of pure and dysprosium doped yttrium phosphate system. J. Mater. Sci. 359514, 1–8 (2013)

    Google Scholar 

  26. J. Mink, M. Skripkin, L. Hajba, C. Nemeth, A. Abbasi, M. Sandstrom, Infrared and rare earth raman spectroscopic and theoretical studies of nona aqua complexes of trivalent metal ions. Spectrochim. Acta A 7, 1639–1645 (2005)

    Article  Google Scholar 

  27. S. Mazen, M.H. Abdullah, R.I. Nakhla, H.M. Zaki, F. Metawe, X-ray analysis and IR absorption Spectra of Li–Ge Ferrit. J. Mater. Chem. Phys. 34, 35–40 (1993)

    Article  Google Scholar 

  28. N.V. Prasad, G.V. Prasad, T. Bhimasankaram, G.S. Kumar Suryanarayana, Synthesis, impedance and dielectric properties of LaBi5Fe2Ti3O18. Bull. Mater. Sci. 24(5), 487–495 (2001)

    Article  Google Scholar 

  29. B.S. Kang, S.K. Choi, Diffuse dielectric anomaly in MnO2-doped Pb0.9La0.1TiO3 ceramic in the temperature range of 400–700 °C. J. Mater. Res. 17(1), 127–132 (2002)

    Article  Google Scholar 

  30. W.D. Kingery, H.K. Bower, D.R. Uhlmann, Introduction to Ceramics (Wiley, Singapore, 1991)

    Google Scholar 

  31. P.M. Botta, J. Mira, A. Fondado, J. Rivas, Increase of the dielectric constant near a magnetic phase transition in La0.5Ca0.5MnO3. Mater. Lett. 61, 2990–2992 (2007)

    Article  Google Scholar 

  32. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5–xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). R. Soc. Chem. Dalton Trans. 44, 10457–10466 (2015)

    Article  Google Scholar 

  33. A. Tiwari, B. Pandey, R. Mishra, A.V. Rane, J. Suryawanshi, Synthesis of samarium doped thin film of SrMnO3 by pulse laser deposition and its structural and magnetic characterization. Curr. Sci. Perspect. 2(1), 1–4 (2016)

    Google Scholar 

  34. S. Biswas, M.H. Khan, S. Pal, Magnetization reversal and ferrimagnetism in Pr1–xNdx MnO3. Bull. Mater. Sci. 37(4), 809–813 (2014)

    Article  Google Scholar 

  35. F. Hong, Z. Cheng, J. Wang, X. Wang, S. Dou, Positive and negative exchange bias effects in the simple pervoskite manganite NdMnO3. Appl. Phys. Lett. 101, 102411 (2012)

    Article  Google Scholar 

  36. T.S. Chan, R.S. Liu, G.Y. Guo, S.F. Hu, J.G. Lin, J.F. Lee, L.Y. Jang, C.R. Chang, C.Y. Huang, Structural, electrical and magnetic characterization of the double perovskites Sr2CrMO6 (M ¼ Mo, W): B0 4d–5d system. Solid State Commun. 131, 531–535 (2004)

    Article  Google Scholar 

  37. I.O. Troyanchuk, M.V. Bushinsky, A.V. Nikitin, L.S. Lobanovsky, The condition for a large magnetoresistance effect in perovskite cobaltites. Low Temp. Phys. 39(11), 948–952 (2013)

    Article  Google Scholar 

  38. A.P. Ramirez, Colossal magnetoresistance, J. Phys.: Condens. Matter 9, 8171–8199 (1997)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, UGC-DAE Consortium for Scientific Research, Indore Centre and specially Prof. Alok Banerjee for providing facilities of vibrating sample magnetometer and resistance measurements at low temperature range. We are also thankful to Gandhi gram institute for carrying out SEM and EDAX analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Bamzai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Raina, B. & Bamzai, K.K. Preparation, structural, spectroscopic and magneto-electric properties of multiferroic cadmium doped neodymium manganite. J Mater Sci: Mater Electron 29, 8947–8957 (2018). https://doi.org/10.1007/s10854-018-8913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8913-7

Navigation