Skip to main content

Physical and electrical characterization of yttrium-stabilized zirconia (YSZ) thin films deposited by sputtering and atomic-layer deposition

Abstract

The physical, chemical, and electrical characteristics of intercalated nano-layers of Y2O3 and ZrO2, sequentially deposited by sputtering and thermal atomic-layer deposition (ALD), are reported in order to assess their use as electronic and/or ionic conductor. In general, the physical and chemical properties of sputtered and ALD-YSZ show good characteristics while a relatively high dielectric constant of about 30, along with a large capacitance–voltage hysteresis, are obtained for ALD-YSZ. Additionally, using inert or reactive metals as gate electrodes on YSZ/n-Si structures, promotes a change in the conduction of electronic and ionic species of YSZ and their influence is also reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    A. Patil, V. Patil, S.D. Wook, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43, 1913–1942 (2008)

    Article  Google Scholar 

  2. 2.

    L. David, R. Bhandavat, U. Barrera, G. Singh, Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci. Rep. 5, 9792 (2015)

    Article  Google Scholar 

  3. 3.

    M. Han, X. Tang, H. Yin, S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757–763 (2007)

    Article  Google Scholar 

  4. 4.

    D. Beckel, H.A. Bieberle, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J. Rupp, L.J. Gauckler, Thin films for micro solid oxide fuel cells. J. Power Sources 173, 325–345 (2007)

    Article  Google Scholar 

  5. 5.

    K.B. Prater, Polymer electrolyte fuel cells: a review of recent developments. J. Power Sources 51, 129–144 (1994)

    Article  Google Scholar 

  6. 6.

    M. Sillassen, P. Eklund, N. .Pryds, E. Johnson, U. Helmersson, J. Bøttiger, Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20, 2071–2076 (2010)

    Article  Google Scholar 

  7. 7.

    C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 11, 255–270 (2011)

    Article  Google Scholar 

  8. 8.

    C.C. Hu, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. J. Electrochem. Soc. 146, 2465 (1999)

    Article  Google Scholar 

  9. 9.

    V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl. Surf. Sci. 255, 4192–4196 (2009)

    Article  Google Scholar 

  10. 10.

    J.P. Zheng, hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699 (1995)

    Article  Google Scholar 

  11. 11.

    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. (Perkin-Elmer, Eden Prairie, MN, 1992)

    Google Scholar 

  12. 12.

    D.W. Liu, C.H. Perry, R.P. Ingel, Infrared spectra in nonstoichiometric yttria-stabilized zirconia mixed crystals at elevated temperatures. J. Appl. Phys. 64, 1413 (1988)

    Article  Google Scholar 

  13. 13.

    E.M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. J. Phys. Chem. C 117, 17666–17673 (2013)

    Article  Google Scholar 

  14. 14.

    C.C. Chao, J.S. Park, X. Tian, J.H. Shim, T.M. Gur, F.B. Prinz, Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia. ACS Nano 7(3), 2186–2191 (2013)

    Article  Google Scholar 

  15. 15.

    C.C. Chao, Y.B. Kim, F.B. Prinz, Surface modification of yttria-stabilized zirconia electrolyte by atomic-layer deposition. Nano Lett. 9(10), 3626–3628 (2009)

    Article  Google Scholar 

  16. 16.

    B.E. Park, I.K. Oh, C. Mahata, C.W. Lee, D. Thompson, H.B.R. Lee, W.J. Maeng, H. Kim, Atomic layer deposition of Y-stabilized ZrO2 for advanced DRAM capacitors. J. Alloy. Compd. 722, 307–312 (2017)

    Article  Google Scholar 

  17. 17.

    D.A. Golosov, S.M. Zavatskiy, S.N. Melnikov, Physical and electrical properties of yttria-stabilized zirconia thin films prepared by radio frequency magnetron sputtering. Acta Polytech. 53, 155–159 (2013)

    Google Scholar 

  18. 18.

    S.J. Wang, C.K. Ong, S.Y. Xu, P. Chen, W.C. Tjiu, A.C.H. Huan, W.J. Yoo, J.S. Lim, W. Feng, W.K. Choi, Electrical properties of crystalline YSZ films on silicon as alternative gate dielectrics. Semicond. Sci. Technol. 16, L13 (2001)

    Article  Google Scholar 

  19. 19.

    S. Oh, S. Hong, H.J. Kim, Y.B. Kim, J. An, Enhancing thermal-stability of metal electrodes with a sputtered gadolinia-doped ceria over-layer for low-temperature solid oxide fuel cells. Ceram. Int. 43, 5781–5788 (2017)

    Article  Google Scholar 

  20. 20.

    J. Molina, H. Uribe, R. Torres, P. Mani, A. Herrera, Accurate modeling of gate tunneling currents in metal-insulator-semiconductor capacitors based on ultra-thin atomic-layer deposited Al2O3 and postmetallization annealing. Thin Solid Films 638, 48–56 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

J. Molina thanks the National Council for Science and Technology (Conacyt-Mexico). This work was also funded by DGAPA-UNAM IT100314, IN107715, IN105114, and Space Charge LLC (USA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel Molina-Reyes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molina-Reyes, J., Tiznado, H., Soto, G. et al. Physical and electrical characterization of yttrium-stabilized zirconia (YSZ) thin films deposited by sputtering and atomic-layer deposition. J Mater Sci: Mater Electron 29, 15349–15357 (2018). https://doi.org/10.1007/s10854-018-8909-3

Download citation