Skip to main content
Log in

Photocatalytic, biodiesel, electrochemical sensing properties and formylation reactions of ZnO nanoparticles synthesized via eco-friendly green synthesis method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoparticles (NPs) were synthesised through green synthesis method with different concentrations of non-germinated razma (NG) seeds and germinated razma (G) seeds powder as a fuel through. The obtained ZnO NPs were characterised by XRD, FTIR, SEM, TEM analytical techniques. The non-germinated and razma germinated seeds powder ratios are the effect on the structure, morphology, UV concentration, PL emission and photodegradation of dye were analysed. The different structure and shape of NPs were explored for the photodegradation of methylene blue dye. The improved photodegradation of zinc oxide NPs was characteristics of slight crystal dimension, new superficial deficiencies, more band hole and ability to make smaller the electron–hole pair rearrangement. The electrochemical property of the synthesized ZnO NPs has been shown by quantifying dopamine at micro molar concentration levels. In the present study, preparation of biodiesel using ZnO nanocatalyst, Pongamiapinnata oil was used. The chemical process of amines with formic acid in the presence of a ZnO nanocatalyst under solvent-free conditions gives a high yielded protocol for the N-formylation to form the corresponding formamide derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Sangeetha, S. Rajeshwari, R. Venkatesh, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Res. Bull. 46, 2560–2566 (2011)

    CAS  Google Scholar 

  2. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7, 184–192 (2011)

    CAS  Google Scholar 

  3. G. Singh, E.M. Joyce, J. Beddow, T.J. Mason, Evaluation of the antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J. Microbiol. Biotechnol. Food Sci. 2(1), 106–120 (2012)

    CAS  Google Scholar 

  4. K. Kim, P.C. Debnath, S. Kim, S.Y. Lee, Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires. Appl. Phys. Lett. 98, 1–3 (2011)

    Google Scholar 

  5. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Controlled synthesis of sea-urchin-like ZnO nanomaterials with the aid of ethylene glycol using a solvothermal. Method Nano.Lett. 3, 235–238 (2003)

    CAS  Google Scholar 

  6. T. T.Matsunaga, Okamura, Tanaka, Biotechnological application of nano-scale engineered bacterial magnetic particles. J. Mater. Chem. 14, 2099–2105 (2004)

    Google Scholar 

  7. T. Matsunaga, T. Suzuki, M. Tanaka, A. Arakaki, Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 25, 182–199 (2007)

    CAS  Google Scholar 

  8. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004)

    CAS  Google Scholar 

  9. J.E. Millstone, S.J. Hurst, G.S. Metraux, J.I. Cutler, C.A. Mirkin, Colloidal gold and silver triangular nanoprisms. Small 5, 646–664 (2009)

    CAS  Google Scholar 

  10. H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009)

    CAS  Google Scholar 

  11. M. Niederberger, Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793–800 (2009)

    Google Scholar 

  12. N. Pinna, M. Niederberger, Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 47, 5292–5304 (2008)

    CAS  Google Scholar 

  13. Y.T. Yin, S.H. Wu, S.H. Chen, L.Y. Chen, Fabrication of ZnO nanorods in one pot via solvothermal method. Chin. Chem. Soc. 58, 749–755 (2011)

    CAS  Google Scholar 

  14. M.E. Abrishami, A. Kompany, Preparation of ZnO nanoparticles by surfactant-assisted complex sol-gel using zinc nitrate. J. Sol-Gel Sci. Technol. 62, 153–159 (2012)

    Google Scholar 

  15. F. Gao, Q. Lu, S. Komarneni, Surface reactivity analysis of 1-D ceria nanorod catalyst for interaction of methanol. J. Nanosci. Nanotechnol. 6, 3812–3819 (2006)

    CAS  Google Scholar 

  16. G. Avgouropoulos, T. Ioannides, H.A. Matralis, Comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Appl. Catal. B 56, 87–93 (2005)

    CAS  Google Scholar 

  17. D. Barreca, E. Comini, A. Gasparotto, C. Maccato, C. Maragno, G. Sberveglieri, E. Tondello, CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. J. Nanosci. Nanotechnol. 8, 1012–1016 (2008)

    CAS  Google Scholar 

  18. D. Kumar, L.S. Reddy Yadav, K. Lingaraju, H. Raja Naika, K. Manjunath, D. Suresh, H. Nagabhushana, S.C. Sharma, G. Nagaraju, Antibacterial and photocatalytic activities of ZnO nanoparticles: synthesis via combustion method. IJLTEMAS 3(4), 2278–2540 (2014)

    Google Scholar 

  19. R.Lo Nigro, R. Toro, G. Malandrin, I.L. Fragal, CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. Chem. Mater. 15, 1434–1440 (2003)

    Google Scholar 

  20. K. Vanheusden, W.L. Warren, C.H. Seager. D.R. Tallant, J.A. Voigt. B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7985 (1996)

    CAS  Google Scholar 

  21. N.S. Pavithra, K. Lingaraju, G.K. Raghu, G. Nagaraju, Citrus maxima (Pomelo) juice mediated eco- friendly synthesis of ZnO nanoparticles: applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta A 185, 11–19 (2017)

    CAS  Google Scholar 

  22. A.K. Ramasami, H. Raja Naika, H. Nagabhushana, T. Ramakrishnappa, G.R. Balakrishna, G. Nagaraju, Tapioca starch: an efficient fuel in the gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles. Mater. Charact. 99, 266–276 (2015)

    CAS  Google Scholar 

  23. S. Rajesh, L.S. Reddy Yadav, K. Thyagarajan, Structural, optical, thermal and photocatalytic properties of ZnO nanoparticles of betel leave by using green synthesis method. J. Nanostruct. 6(3), 250–255 (2016)

    CAS  Google Scholar 

  24. K. Manjunath, T.N. Ravishankar, D. Kumar, K.P. Priyanka, T. Varghese, H. RajaNaika, H. Nagabhushana, S.C. Sharma, J. Dupont, T. Ramakrishnappa, G. Nagaraju, Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications. Mater. Res. Bull. 57, 325–334 (2014)

    CAS  Google Scholar 

  25. L.S. Reddy Yadav, B. Archana, K. Lingaraju, C. Kavitha, D. Suresh, H. Nagabhushana, G. Nagaraju, Electrochemical sensing, photocatalytic and biological activities of ZnO nanoparticles: synthesis via green chemistry route. Int. J. Nanosci. 15(2), 165–175 (2016)

    Google Scholar 

  26. L.S. Reddy Yadav, K. Lingaraju, C. Kavitha, H. Nagabhushana, G. Nagaraju, Antibacterial and photocatalytic activities of ZnO nanoparticles: synthesized using watermelon juice as fuel. Int. J. Nanosci. 15(1), 155–161 (2015)

    Google Scholar 

  27. N. N.Bala, M. S.Saha, S. Chakraborty, Maiti,.R. Das.P. Basu, Nandy Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, antibacterial activity and anti-diabetic activity. RSC Adv. 5, 4993–5003 (2015)

    Google Scholar 

  28. L.S. Reddy Yadav, K. Manjunath, B. Archana, C. Madhu, H. Raja Naika, H. Nagabhushana, C. Kavitha, G. Nagaraju, Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur. Phys. J. Plus 131, 154–165 (2016)

    Google Scholar 

  29. D. Kumar, L.S. Reddy Yadav, K. Manjunath, K. Lingaraju, G. Nagaraju, H. Nagabhushana, R.B. Basavaraja, Photocatalytic and anti-bacterial studies: synthesis of ZnO nanoparticles via green chemistry route. J. Adv. Mater. Eng. 7, 113–119 (2014)

    Google Scholar 

  30. M.A. F.Ma, Hanna, Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999)

    Google Scholar 

  31. B. Yoosuk, P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya-empikul, K. Faungnawakij, Magnesia modified with strontium as a solid base catalyst for trans esterification of palm olein. Chem. Eng. J. 162, 58–66 (2010)

    CAS  Google Scholar 

  32. M. Canakci, The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Technol. 98, 183–190 (2007)

    CAS  Google Scholar 

  33. G. Kafuku, M. Kee Lam, J. Kansedo, K. Teong Lee, M. Mbarawa, Heterogeneous catalysed biodiesel production from Moringaoleifera oil. Fuel Process. Technol. 91, 1525–1529 (2010)

    CAS  Google Scholar 

  34. A.M. Dehcordi, M. Ghasemi, Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxide as heterogeneous base catalysts. Fuel Process. Technol. 97, 45–51 (2012)

    Google Scholar 

  35. S.Hu,L. Wen, Y. Wang, X. Zhen, H. Han, Gas-liquid counter current integration process for continuous biodiesel production using microporous solid base KF/CaO as a catalyst. Bioresour. Technol. 123, 413–418 (2012)

    Google Scholar 

  36. B.P. Bandgar, S.N. Kinkar, S.S. Chobe, G.G. Mandawad, O.S. Yemul, B.S. Dawane, Clean and green approach for N-formylation of amines using formic acid under neat reaction condition. Appl. Sci. Res. 3(3), 246–225 (2011)

    CAS  Google Scholar 

  37. D. Habibi, P. Rahmani, Z. Akbaripanah, N-formylation of anilines with silica sulfuric acid under solvent-free conditions. J. Chem. 201, 1–6 (2013)

    Google Scholar 

  38. M.H. Sarvari, H. Sharghi, ZnO as a new catalyst for N-formylation of amines under solvent-free conditions. J. Org. Chem. 71(17, 6652–6654 (2006)

    Google Scholar 

  39. S. Kobayashi, K. Nishio, Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates. J. Org. Chem. 59(22), 6620–6628 (1994)

    CAS  Google Scholar 

  40. S. Kobayashi, M. Yashuda, I. Hachiya, Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient, reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydrido silicates. Chem. Lett. 5, 407–408 (1996)

    Google Scholar 

  41. M. Rahman, D. Kundu, A. Hajra, A. Majee, Formylation without catalyst and solvent at 80 °C. Tetrahedron Lett. 51, 2896–2899 (2010)

    CAS  Google Scholar 

  42. B. Das, M. Krishnaiah, P. Balasubramanyam, B. Veeranjaneyulu, D. Nandan Kumar, A remarkably simple N-formylation of anilines using polyethylene glycol. Tetrahedron Lett. 49, 2225–2227 (2008)

    CAS  Google Scholar 

  43. S. Guo, B. Qian, Y. Xie, C. Xia, H. Huang, Copper-catalyzed oxidative amination of benzoxazoles via C–H and C–N bond activation: a new strategy for using tertiary amines as nitrogen group sources. Org. Lett. 13(3), 522–525 (2011)

    CAS  Google Scholar 

  44. L.S. Reddy Yadav, K. Manjunath, G. Nagaraju, Synergistic effect of MgO nanoparticles for electrochemical sensing, photo catalytic-dye degradation and antibacterial activity. Mater. Res. Express 4(2), 25–30 (2017)

    Google Scholar 

  45. S.C. Pillai, J.M. Kelly, D.E. McCormack, P. OBrien, R. Ramesh, The effect of processing conditions on varistors prepared from nanocrystalline ZnO. J. Mater. Chem. 13, 2586–2596 (2003)

    CAS  Google Scholar 

  46. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105–115 (2007)

    Google Scholar 

  47. R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds, vol. 220 (Academic Press, New York, 1971)

    Google Scholar 

  48. A. Umar, M.M. Rahman, M. Vaseem, Y.B. Hahn, Ultra-sensitive cholesterol biosensor based on low-temperature-grown ZnO nanoparticles. Electrochem. Commun. 11, 118–121 (2009)

    CAS  Google Scholar 

  49. L.S. Reddy Yadav, C. Kavitha, G. Nagaraju, Synthesis of CeO2 nanoparticles: photocatalytic and antibacterial activities. Eur. Phys. J. Plus. 132, 239–245 (2017)

    Google Scholar 

  50. T. Pandiyarajan, B. Karthikeyan, P. Venkatesan, M. Ashok, S. Anandan, N.V. Giridharan, Simple synthesis and spectroscopic studies on cobalt added ZnO nanocrystals. Spectrochim. Acta A 74(1), 84–86 (2009)

    CAS  Google Scholar 

  51. A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A 141, 231–236 (2001)

    CAS  Google Scholar 

  52. M. Muruganandham, M. Swaminathan, Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension. Sol. Energy Mater. Sol. Cells 81, 439–457 (2004)

    CAS  Google Scholar 

  53. S. Rengaraj, X.Z. Li, Photocatalytic degradation of bisphenol A as an endocrine disruptor in aqueous suspension using Ag-TiO2 catalysts. Int. Environ. Pollut. 27, 20–29 (2006)

    CAS  Google Scholar 

  54. A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 224, 17–25 (1993)

    Google Scholar 

  55. J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, The preparation and characterization of La-doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 177, 3375–3382 (2004)

    Google Scholar 

  56. I. Poulios, I. Tsachpinis, Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. J. Chem. Technol. Biotechnol. 74, 349–357 (1999)

    CAS  Google Scholar 

Download references

Acknowledgements

The author G. Nagaraju thanks to DST-NanoMission (SR/NM/NS-1226/2013) Govt. of India, for funding. L. S. Reddy Yadav acknowledges BMSIT, Bangalore for constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy Yadav, L.S., Raghavendra, M., Udayabhanu et al. Photocatalytic, biodiesel, electrochemical sensing properties and formylation reactions of ZnO nanoparticles synthesized via eco-friendly green synthesis method. J Mater Sci: Mater Electron 29, 8747–8759 (2018). https://doi.org/10.1007/s10854-018-8891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8891-9

Navigation