Skip to main content
Log in

Tunable luminescence and energy transfer properties in YVO4:Bi3+,Ln3+ (Ln = Dy, Sm, Eu) phosphors prepared by microwave sintering method

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

YVO4:Bi3+,Ln3+ (Ln = Dy, Sm, Eu) phosphors were successful synthesized by microwave sintering method, and characterized by X-ray powder diffraction, scanning electron microscope, photoluminescence spectra, lifetime, quantum efficiency and general structure analysis system structure refinement. Refinement results indicated that the introduced ions occupy the sites of Y3+. Under 275 nm excitation, the luminescent intensity of YVO4:Bi3+ samples reach the maximum when Bi3+ concentration is 0.02, the broad excitation spectrum of YVO4:Bi3+ has a strongest peak at near 343 nm. Doped Bi3+ can effectively improve the emission intensity of YVO4:Ln3+. The energy transfer mechanism of Bi3+ → Ln3+ was dipole-quadrupole mechanism of electric multipole interaction. The critical distance (Rc) between Ln3+ and Bi3+ were calculated by concentration quenching method. Emitting color of YVO4:Bi3+,Ln3+ phosphors were tunable by adjusting Ln3+ content. In a word, the material has a good application prospects on light emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Zhou, J. Lin, Luminescent properties of YVO4:Dy3+ phosphors prepared by spray pyrolysis. J. Alloys Compd. 408, 856–859 (2006)

    Google Scholar 

  2. M. Bass, Electrooptic Q switching of the Nd:YVO4 laser without an intracavity polarizer. IEEE J. Quantum Electron. 11, 938 (1975)

    Google Scholar 

  3. J.R. O’Connor, Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd. Appl. Phys. Lett. 9, 407 (1966)

    Google Scholar 

  4. R.A. Fields, M. Birnbaum, C.L. Fincher, Highly efficient Nd:YVO4 diode-laser end-pumped laser. Appl. Phys. Lett. 51, 1885 (1987)

    CAS  Google Scholar 

  5. W. Xu, H.W. Song, D.T. Yan, H.H. Zhu, Y. Wang, S. Xu, X. Bai, B. Dong, Y.X. Liu, YVO4:Eu3+,Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells. J. Mater. Chem. 21, 12331 (2011)

    CAS  Google Scholar 

  6. J.Y. Sun, J.B. Xian, Z.G. Xia, H.Y. Du, Synthesis, structure and luminescence properties of Y(V,P)O4:Eu3+,Bi3+ phosphors. J. Lumin. 130, 1818–1824 (2010)

    CAS  Google Scholar 

  7. X.Y. Huang, J.X. Wang, D.C. Yu, S. Ye, Q.Y. Zhang, X.W. Sun, Spectral conversion for solar cell efficiency enhancement using YVO4:Bi3+,Ln3+ (Ln = Dy, Er, Ho, Eu, Sm, and Yb) phosphors. J. Appl. Phys. 109, 113526 (2011)

    Google Scholar 

  8. Z.G. Xia, R.S. Liu, K.W. Huang, V. Drozd, Ca2Al3O6F:Eu2+: a green-emitting oxyfluoride phosphor for white light-emitting diodes. J. Mater. Chem. 22, 15183 (2012). https://doi.org/10.1039/c2jm32733c

    Article  CAS  Google Scholar 

  9. C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 7, 511–516 (2003)

    Google Scholar 

  10. M.J. Webber, Inorganic scintillators: today and tomorrow. J. Lumin. 100, 35–45 (2002)

    Google Scholar 

  11. S.E. Derenzo, M.J. Webber, E. Bourret-Courchesne, M.K. Klintenberg, The quest for the ideal inorganic scintillator. Nucl. Instrum. Methods Phys. A 505, 111–117 (2003)

    CAS  Google Scholar 

  12. M. Nikl, Scintillation detectors for X-rays. Meas. Sci. Technol. 17, R37-R54 (2006)

    Google Scholar 

  13. C. Brecher, H. Samelson, A. Lempicki, R. Riley, T. Peters, Polarized spectra and crystal-field parameters of Eu3+ in YVO4. Phys. Rev. 155, 178 (1967)

    CAS  Google Scholar 

  14. G. Blasse, B.B. Grabmaier, Luminescent Materials (Springer, Berlin, 1994), p. 134

    Google Scholar 

  15. K.B. Ozanyan, J.E. Nicholls, L. May, J.H. Hogg, W.E. Hagston, B. Lunn, D.E. Ashendord, Optically pumped stimulated emission in ZnS/ZnCdS multiple quantum-wells MBE-grown on GaP. Solid State Commun. 99, 40 (1996)

    Google Scholar 

  16. G.F. Wang, W.P. Qin, D.S. Zhang, L.L. Wang, G.D. Wei, P.F. Zhu, R. Kim, Enhanced photoluminescence of water soluble YVO4:Ln3+ (Ln = Eu, Dy, Sm, and Ce) nanocrystals by Ba2+ doping. J. Phys. Chem. C. 112, 17042–17045 (2008)

    CAS  Google Scholar 

  17. E. Cavalli, M. Bettinell, A. Belletti, A. Speghini, Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy3+. J. Alloys Compd. 341, 107 (2002)

    CAS  Google Scholar 

  18. J.G. Su, X.Y. Mi, J.C. Sun, L.X. Yang, C.L. Hui, L.P. Lu, Z.H. Bai, X.Y. Zhang, Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors. J. Mater. Sci. 52, 782–792 (2017)

    CAS  Google Scholar 

  19. K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 102, 10129 (1998)

    CAS  Google Scholar 

  20. H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, Low temperature synthesis of nanocrystalline YVO4:Eu via polyacrylamide gel method. J. Solid State Chem. 177, 2649–2654 (2004)

    CAS  Google Scholar 

  21. F. Wang, X. Xue, X. Liu, Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906 (2008)

    CAS  Google Scholar 

  22. A.K. Levine, F.C. Palilla, A new highly efficient red-emitting cathode luminescent phosphors (YVO4:Eu) for color television. Appl. Phys. Lett. 5, 118 (1964)

    CAS  Google Scholar 

  23. Z.Y. Hou, P.P. Yang, C.X. Li, L.L. Wang, H.Z. Lian, Z.W. Quan, J. Lin, Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt: geological features and tectonic model. Chem. Mater. 20, 6686 (2008)

    CAS  Google Scholar 

  24. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, J. Lin, Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors. Inorg. Chem. 49, 6706 (2010)

    CAS  Google Scholar 

  25. S. Erdei, F.W. Ainger, D. Ravichandran, W.B. White, L.E. Cross, Preparation of Eu3+:YVO4 red and Ce3+,Tb3+:LaPO4 green phosphors by hydrolyzed colloid reaction (HCR) technique. Mater. Lett. 30, 389 (1997)

    CAS  Google Scholar 

  26. M. Haase, K. Riwotzki, H. Meyssamy, A. Kornowski, Synthesis and properties of colloidal lanthanide-doped nanocrystals. J. Alloys Compd. 303–304, 191–197 (2000)

    Google Scholar 

  27. L. Li, M. Zhao, W. Tong, X. Guan, G. Li, L. Yang, Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence. Nanotechnology 21, 195601 (2010)

    Google Scholar 

  28. F.C. Palilla, A.K. Levine, M.J. Rinkevics, Rare earth activated phosphors based on yttrium orthovanadate and related compounds. Electrochem. Soc. 112(8), 776 (1965)

    CAS  Google Scholar 

  29. A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J.P. Boilot, Synthesis and characterizations of YVO4:Eu colloids. Chem. Mater. 14, 2264 (2002)

    CAS  Google Scholar 

  30. P. Gerner, K. Kramer, H.U. Güdel, Broad-band Cr5+-sensitized Er3+ luminescence in YVO4. J. Lumin. 102–103, 112 (2003)

    Google Scholar 

  31. Q. Su, Z.W. Pei, J. Lin, F. Xue, Luminescence of Dy3+ enhanced by sensitization. J. Alloys Compd. 225, 103 (1995)

    CAS  Google Scholar 

  32. S. Thakur, A.K. Gathania, Structural and optical studies on the crushed roots of Saccharum munja grass: a new low cost red phosphor source for optical applications. Indian J. Phys. 91(6), 623–627 (2017). https://doi.org/10.1007/s12648-017-0967-5

    Article  CAS  Google Scholar 

  33. S. Thakur, A.K. Gathania, Optical properties of YVO4:Eu3+ nano-phosphors at different europium concentrations. Indian J. Phys. 89(9), 973–979 (2015). https://doi.org/10.1007/s12648-015-0670-3

    Article  CAS  Google Scholar 

  34. S. Thakur, A.K. Gathania, Fluorescence study of Eu-YVO4 nano-phosphors as a function of calcination temperature and excitation wavelengths. J Fluoresc. 25(3), 657–661 (2015). https://doi.org/10.1007/s10895-015-1551-z

    Article  CAS  Google Scholar 

  35. H. Yu, A. Yu, Y. Li, Y. Song, Y. Wu, C. Sheng, B. Chen, Energy transfer processes in electrospun LaOCl:Ce/Tb nanofibers. J. Alloys Compd. 683, 256–262 (2016)

    CAS  Google Scholar 

  36. H. Yu, T. Li, B. Chen, Y. Wu, Y. Li, Preparation of aligned Eu(DBM)3phen/PS fibers by electrospinning and their luminescence properties. J. Colloid. Interface Sci. 400 175–180 (2013)

    CAS  Google Scholar 

  37. H. Yu, Y. Li, Y. Song, Y. Wu, X. Lan, S. Liu, Y. Tang, S. Xu, B. Chen, Ultralong well-aligned TiO2:Ln3+ (Ln = Eu, Sm, or Er) fibres prepared by modified electrospinning and their temperature-dependent luminescence. Sci. Rep. 7, 44099 (2017)

    Google Scholar 

  38. W.J. Park, M.K. Jung, S.J. Im, D.H. Yoon, Photoluminescence characteristics of energy transfer between Bi3+ and Eu3+ in LnVO4:Eu, Bi (Ln = Y, La, Gd). Colloid Surf. A 313–314, 373–377 (2008)

    Google Scholar 

  39. S. Takeshita, T. Isobe, T. Sawayama, S. Niikura, Effects of the homogeneous Bi3+ doping process on photoluminescence properties of YVO4:Bi3+,Eu3+ nanophosphor. J. Lumin. 129, 1067–1072 (2009)

    CAS  Google Scholar 

  40. B. Yan, X.Q. Su, Chemical co-precipitation synthesis of luminescent BixY1–xVO4:RE (RE = Eu3+, Dy3+, Er3+) phosphors from hybrid precursors. J. Non-Cryst. Solids 352, 3275–3279 (2006)

    CAS  Google Scholar 

  41. International Centre for Diffraction Data, Powder Diffraction File 17-0341

  42. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)

    Google Scholar 

  43. S. Takeshita, T. Isobe, S. Niikura, Low-temperature wet chemical synthesis and photoluminescence properties of YVO4:Bi3+, Eu3+ nanophosphors. J. Lumin. 128, 1515–1522 (2008)

    CAS  Google Scholar 

  44. X.Z. Xiao, B. Yan, Y.S. Song, GdPxV1–xO4:Eu3+ nanophosphor and hydrated Zn3(PO4)2:Eu3+ nanorod bunch: facile reproducible hydrothermal synthesis, controlled microstructure, and photoluminescence. Cryst. Growth Des. 9, 136 (2009)

    CAS  Google Scholar 

  45. F.W. Kang, M.Y. Peng, X.B. Yang, G.P. Dong, G.H. Nie, W.J. Liang, S.H. Xu, J.R. Qiu, Broadly tuning Bi3+ emission via crystal field modulation in solid solution compounds (Y,Lu,Sc) VO4:Bi for ultraviolet converted white LEDs. J. Mater. Chem. C 8, 1373–1380 (2014). https://doi.org/10.1039/c4tc00238e

    Article  CAS  Google Scholar 

  46. Z.G. Xia, D.M. Chen, M. Yang, T. Ying, Synthesis and luminescence properties of YVO4:Eu3+,Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping. J. Phys. Chem. Solids 71, 175–180 (2010)

    CAS  Google Scholar 

  47. Y.C. Chen, Y.C. Wu, D.Y. Wang, T.M. Chen, Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+,Eu3+ nanocrystals by a facile hydrothermal process. J. Mater. Chem. 22, 7961 (2012)

    CAS  Google Scholar 

  48. G. Sinha, A. Patra, Generation of green, red and white light from rare-earth doped Ga2O3 nanoparticles. Chem. Phys. Lett. 473, 151–154 (2009). https://doi.org/10.1016/j.cplett.2009.03.074

    Article  CAS  Google Scholar 

  49. M.L. Zhao, G.S. Li, J. Zheng, L.P. Li, L.S. Yang, Fabrication of assembled spheres YVO4:(Ln3+,Bi3+) towards optically tunable emission. CrystEngComm 14, 2062 (2012)

    CAS  Google Scholar 

  50. X.Y. Mi, J.C. Sun, P. Zhou, H.Y. Zhou, D. Song, K. Li, M.M. Shang, J. Lin, Tunable luminescence and energy transfer properties in Ca8MgLu(PO4)7:Ce3+,Tb3+,Mn2+ phosphors. J. Mater. Chem. C 3, 4471–4481 (2015)

    CAS  Google Scholar 

  51. A. Zhamu, G.R. Chen, C.G. Liu, D. Neff, Q. Fang, Z.N. Yu, W. Xiong, Y.B. Wang, X.Q. Wang, B.Z. Jang, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701 (2012)

    CAS  Google Scholar 

  52. Z.Y. Hou, G.G. Li, H.Z. Lian, J. Lin, One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application. J. Mater. Chem. 22, 5254 (2012)

    CAS  Google Scholar 

  53. G. Blasse, A. Bril, Fluorescence of Eu3 + activated sodium lanthanide titanates (NaLn). J. Chem. Phys. 48, 217 (1968)

    CAS  Google Scholar 

  54. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Google Scholar 

  55. J.C. Sun, X.Y. Mi, L.J. Lei, X.Y. Pan, S.Y. Chen, Z. Wang, Z.H. Bai, X.Y. Zhang, Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors. CrystEngComm 17, 7888–7895 (2015)

    CAS  Google Scholar 

  56. X.Y. Mi, H. Shi, Z. Wang, L.J. Xie, H.Y. Zhou, J.G. Su, J. Lin, Luminescence properties of M3(VO4)2:Eu3+(M = Ca, Sr, Ba) phosphors., J. Mater. Sci. 51 3545–3554 https://doi.org/10.1007/s10853-015-9674-9. (2016)

    Article  CAS  Google Scholar 

  57. X.Y. Mi, K. Du, K. Huang, P. Zhou, D.L. Geng, Y. Zhang, M.M. Shang, J. Lin, Synthesis and luminescence of Ca9Eu1–xLnx(VO4)7(Ln = Y, La, Gd, Lu) phosphors. Mater. Res. Bull. 60, 72–78 (2014)

    CAS  Google Scholar 

  58. K.S. Sohn, B. Cho, H.D. Park, Photoluminescence behavior of manganese-doped zinc silicate phosphors. J. Am. Ceram. Soc. 82(10), 2779–2784 (1999)

    CAS  Google Scholar 

  59. B.M. Antipeuko, I.M. Bataev, V.L. Ermolaev, E.I. Lyubimov, T.A. Privalova, Ion-to-ion radiationless transfer of electron excitation energy between rare-earth ions in POCl3-SnCl4. Opt. Spectrosc. 29, 177 (1970)

    Google Scholar 

  60. D.L. Dexter, J.A. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1071 (1954)

    CAS  Google Scholar 

  61. G. Blasse, Energy transfer in oxidic phosphors. Philips Res. Rep. 24, 131–134 (1969)

    CAS  Google Scholar 

  62. L. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114(10), 1048–1053 (1967)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51602027). Jilin Provincial Department of education project (Grant No. JJKH20170607KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Mi.

Ethics declarations

Conflict of interest

All authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Mi, X., Su, J. et al. Tunable luminescence and energy transfer properties in YVO4:Bi3+,Ln3+ (Ln = Dy, Sm, Eu) phosphors prepared by microwave sintering method. J Mater Sci: Mater Electron 29, 7941–7951 (2018). https://doi.org/10.1007/s10854-018-8887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8887-5

Navigation